IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8311-d698987.html
   My bibliography  Save this article

Design of Hybrid (PV-Diesel) System for Tourist Island in Karimunjawa Indonesia

Author

Listed:
  • Nurul Hiron

    (Department of Electrical Engineering, University of Siliwangi, Tasikmalaya 46115, Jawa Barat, Indonesia)

  • Nundang Busaeri

    (Department of Electrical Engineering, University of Siliwangi, Tasikmalaya 46115, Jawa Barat, Indonesia)

  • Sutisna Sutisna

    (Department of Electrical Engineering, University of Siliwangi, Tasikmalaya 46115, Jawa Barat, Indonesia)

  • Nurmela Nurmela

    (Department of Electrical Engineering, University of Siliwangi, Tasikmalaya 46115, Jawa Barat, Indonesia)

  • Aceng Sambas

    (Department of Mechanical Engineering, University of Muhammadiyah, Tasikmalaya 46115, Jawa Barat, Indonesia)

Abstract

The main problem with electricity supply on densely populated islands is reliable, low-carbon, and sustainable electricity. The availability of potential energy needs in-depth observation to ensure that the system can be built sustainably. This paper examines the integration of PV systems and diesel power systems on Karimunjawa Island to meet the need for reliable systems from economic, ecological, and technological aspects. Using the DigSilent Power Factory program to obtain the system response interference and penetration of the Photovoltaic (PV) system. Furthermore, this paper also tests short circuit analysis and economic feasibility analysis while validating the Levelized Cost of Electricity (LCOE) and Electric Production Cost (EPC) approaches. The results show that the availability of irradiation can handle the electricity needs on Karimunjawa Island. In addition, it proposes the designed requirements for an integrated PV power system and Diesel Power Plant (DPP) system. The research has also captured the synergistic profile of PV and DPP working coordination within 24 h.

Suggested Citation

  • Nurul Hiron & Nundang Busaeri & Sutisna Sutisna & Nurmela Nurmela & Aceng Sambas, 2021. "Design of Hybrid (PV-Diesel) System for Tourist Island in Karimunjawa Indonesia," Energies, MDPI, vol. 14(24), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8311-:d:698987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sk Abdul Aleem & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "A Review of Strategies to Increase PV Penetration Level in Smart Grids," Energies, MDPI, vol. 13(3), pages 1-28, February.
    2. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    3. Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Marcin Szott & Szymon Wermiński & Marcin Jarnut & Jacek Kaniewski & Grzegorz Benysek, 2021. "Battery Energy Storage System for Emergency Supply and Improved Reliability of Power Networks," Energies, MDPI, vol. 14(3), pages 1-21, January.
    5. Nathphol Khaboot & Chitchai Srithapon & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Increasing Benefits in High PV Penetration Distribution System by Using Battery Enegy Storage and Capacitor Placement Based on Salp Swarm Algorithm," Energies, MDPI, vol. 12(24), pages 1-20, December.
    6. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    7. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    8. Handrea Bernando Tambunan & Dzikri Firmansyah Hakam & Iswan Prahastono & Anita Pharmatrisanti & Andreas Putro Purnomoadi & Siti Aisyah & Yonny Wicaksono & I Gede Ryan Sandy, 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System," Energies, MDPI, vol. 13(22), pages 1-22, November.
    9. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    10. Zvonimir Šimić & Danijel Topić & Ilija Crnogorac & Goran Knežević, 2021. "Method for Sizing of a PV System for Family Home Using Economic Indicators," Energies, MDPI, vol. 14(15), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yani Fristikawati, 2022. "Legal analysis regarding nuclear power plant and its relation to the protection of environment and society," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 11(1), pages 290-297, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    2. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    3. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    4. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    5. Mohan Chaitanya Barla & Dipu Sarkar, 2023. "Optimal placement and sizing of BESS in RES integrated distribution systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1866-1876, October.
    6. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    7. Sheha, Moataz & Mohammadi, Kasra & Powell, Kody, 2021. "Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage," Applied Energy, Elsevier, vol. 282(PA).
    8. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    9. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    10. Meisheng He & Habib Forootan Fard & Khalid Yahya & Mahmoud Mohamed & Ibrahim Alhamrouni & Lilik Jamilatul Awalin, 2023. "Optimal Design of Hybrid Renewable Systems, Including Grid, PV, Bio Generator, Diesel Generator, and Battery," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    11. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    12. Jarosław Kulpa & Piotr Olczak & Tomasz Surma & Dominika Matuszewska, 2021. "Comparison of Support Programs for the Development of Photovoltaics in Poland: My Electricity Program and the RES Auction System," Energies, MDPI, vol. 15(1), pages 1-17, December.
    13. Andrei M. Tudose & Dorian O. Sidea & Irina I. Picioroaga & Nicolae Anton & Constantin Bulac, 2023. "Increasing Distributed Generation Hosting Capacity Based on a Sequential Optimization Approach Using an Improved Salp Swarm Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-22, December.
    14. Liu, Dunnan & Liu, Mingguang & Xu, Erfeng & Pang, Bo & Guo, Xiaodan & Xiao, Bowen & Niu, Dongxiao, 2018. "Comprehensive effectiveness assessment of renewable energy generation policy: A partial equilibrium analysis in China," Energy Policy, Elsevier, vol. 115(C), pages 330-341.
    15. Han, Mengyao & Xiong, Jiao & Wang, Siyuan & Yang, Yu, 2020. "Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation," Energy Policy, Elsevier, vol. 144(C).
    16. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    17. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    18. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. V S Bharath Kurukuru & Ahteshamul Haque & Arun Kumar Tripathy & Mohammed Ali Khan, 2022. "Machine learning framework for photovoltaic module defect detection with infrared images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1771-1787, August.
    20. Satria Putra Kanugrahan & Dzikri Firmansyah Hakam & Herry Nugraha, 2022. "Techno-Economic Analysis of Indonesia Power Generation Expansion to Achieve Economic Sustainability and Net Zero Carbon 2050," Sustainability, MDPI, vol. 14(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8311-:d:698987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.