IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4792-d1745399.html
   My bibliography  Save this article

Energy Storage Systems for Fluctuating Energy Sources and Fluctuating Loads—Analysis of Selected Cases

Author

Listed:
  • Marcin Jarnut

    (Institute of Automation, Electronics and Electrical Engineering, University of Zielona Gora, ul. prof. Z. Szafrana 2, 65-516 Zielona Gora, Poland)

  • Jacek Kaniewski

    (Institute of Automation, Electronics and Electrical Engineering, University of Zielona Gora, ul. prof. Z. Szafrana 2, 65-516 Zielona Gora, Poland)

  • Mariusz Buciakowski

    (Institute of Automation, Electronics and Electrical Engineering, University of Zielona Gora, ul. prof. Z. Szafrana 2, 65-516 Zielona Gora, Poland)

Abstract

The dynamic development of energy storage technologies makes it possible to solve many problems related to the negative impact of renewable sources and fluctuating loads on the power and voltage quality parameters at their point of connection to the distribution grid. By absorbing temporary energy surpluses and covering temporary energy deficits, these technologies enable the smoothing of output power profiles of wind turbines, as well as the reduction in peak power values, for example, in traction substations or fast-charging hubs for electric vehicles. This article discusses the specifics of both applications with particular emphasis on methods for sizing energy storage parameters, methods for their control, and the special effects they allow us to achieve. The methods proposed by the authors allow for the more optimal selection of energy storage parameters in existing energy facilities based on their measured power profiles. The proposed control methods, in turn, allow for not only a reduction in relative changes in power and voltage but also enable an increase in the installed power of wind farms without investing in the modernization of the distribution network, as well as reducing the contracted power of traction substations. The analyses presented in this article are based on power profile measurements of real objects, and the proposed solutions are already being implemented in power infrastructure.

Suggested Citation

  • Marcin Jarnut & Jacek Kaniewski & Mariusz Buciakowski, 2025. "Energy Storage Systems for Fluctuating Energy Sources and Fluctuating Loads—Analysis of Selected Cases," Energies, MDPI, vol. 18(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4792-:d:1745399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Peng & Longfu Luo & Jingyu Yang & Wanting Li, 2024. "A Wind Power Fluctuation Smoothing Control Strategy for Energy Storage Systems Considering the State of Charge," Energies, MDPI, vol. 17(13), pages 1-20, June.
    2. Kucevic, Daniel & Englberger, Stefan & Sharma, Anurag & Trivedi, Anupam & Tepe, Benedikt & Schachler, Birgit & Hesse, Holger & Srinivasan, Dipti & Jossen, Andreas, 2021. "Reducing grid peak load through the coordinated control of battery energy storage systems located at electric vehicle charging parks," Applied Energy, Elsevier, vol. 295(C).
    3. Fan Li & Dan Wang & Dong Liu & Songheng Yang & Ke Sun & Zhongjian Liu & Haoyang Yu & Jishuo Qin, 2023. "A Comprehensive Review on Energy Storage System Optimal Planning and Benefit Evaluation Methods in Smart Grids," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    4. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
    5. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    6. Pablo L. Tabosa da Silva & Pedro A. Carvalho Rosas & José F. C. Castro & Davidson da Costa Marques & Ronaldo R. B. Aquino & Guilherme F. Rissi & Rafael C. Neto & Douglas C. P. Barbosa, 2023. "Power Smoothing Strategy for Wind Generation Based on Fuzzy Control Strategy with Battery Energy Storage System," Energies, MDPI, vol. 16(16), pages 1-16, August.
    7. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    8. Marcin Szott & Szymon Wermiński & Marcin Jarnut & Jacek Kaniewski & Grzegorz Benysek, 2021. "Battery Energy Storage System for Emergency Supply and Improved Reliability of Power Networks," Energies, MDPI, vol. 14(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    2. Iqra Nazir & Nermish Mushtaq & Waqas Amin, 2025. "Smart Grid Systems: Addressing Privacy Threats, Security Vulnerabilities, and Demand–Supply Balance (A Review)," Energies, MDPI, vol. 18(19), pages 1-77, September.
    3. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    4. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    5. Anisa Surya Wijareni & Hendri Widiyandari & Agus Purwanto & Aditya Farhan Arif & Mohammad Zaki Mubarok, 2022. "Morphology and Particle Size of a Synthesized NMC 811 Cathode Precursor with Mixed Hydroxide Precipitate and Nickel Sulfate as Nickel Sources and Comparison of Their Electrochemical Performances in an," Energies, MDPI, vol. 15(16), pages 1-15, August.
    6. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    7. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    8. Caleb Scarlett & Vivek Utgikar, 2025. "Exploring the Material Feasibility of a LiFePO 4 -Based Energy Storage System," Energies, MDPI, vol. 18(15), pages 1-15, August.
    9. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    10. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Harika Dasari & Eric Eisenbraun, 2021. "Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-16, March.
    13. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Zhou Su & Guoqing Yang & Lixiao Yao & Qingqing Zhou & Yuhan Zhang, 2024. "Optimization of Provincial Power Source Structure Planning in Northwestern China Based on Time-Series Production Simulation," Energies, MDPI, vol. 17(19), pages 1-14, September.
    15. Alessandro Di Giorgio & Emanuele De Santis & Lucia Frettoni & Stefano Felli & Francesco Liberati, 2023. "Electric Vehicle Fast Charging: A Congestion-Dependent Stochastic Model Predictive Control under Uncertain Reference," Energies, MDPI, vol. 16(3), pages 1-16, January.
    16. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    17. Li, Jinwen & Che, Yunhong & Zhang, Kai & Liu, Hongao & Zhuang, Yi & Liu, Congzhi & Hu, Xiaosong, 2024. "Efficient battery fault monitoring in electric vehicles: Advancing from detection to quantification," Energy, Elsevier, vol. 313(C).
    18. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Shao, Lingjie & Wu, Junle & Ma, Jinghan & Yu, Shengjie & Li, Mengsi, 2025. "Valuation and optimal operation of power investment projects with and without volume constraints under one-factor model," Energy, Elsevier, vol. 330(C).
    20. Artur Kozłowski & Łukasz Bołoz, 2021. "Design and Research on Power Systems and Algorithms for Controlling Electric Underground Mining Machines Powered by Batteries," Energies, MDPI, vol. 14(13), pages 1-21, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4792-:d:1745399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.