IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1074-d215574.html
   My bibliography  Save this article

Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements

Author

Listed:
  • Yu Miao

    (Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA)

  • Patrick Hynan

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA)

  • Annette von Jouanne

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA)

  • Alexandre Yokochi

    (Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA)

Abstract

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.

Suggested Citation

  • Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1074-:d:215574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    2. Marcelo Maciel & Luiz Rosa & Fernando Correa & Ursula Maruyama, 2012. "Energy, Pollutant Emissions and Other Negative Externality Savings from Curbing Individual Motorized Transportation (IMT): A Low Cost, Low Technology Scenario Analysis in Brazilian Urban Areas," Energies, MDPI, vol. 5(3), pages 1-27, March.
    3. Feyijimi Adegbohun & Annette von Jouanne & Kwang Y. Lee, 2019. "Autonomous Battery Swapping System and Methodologies of Electric Vehicles," Energies, MDPI, vol. 12(4), pages 1-14, February.
    4. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Huseyin Coban & Aysha Rehman & Abdullah Mohamed, 2022. "Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport," Energies, MDPI, vol. 15(5), pages 1-20, March.
    2. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    3. Hridoy Roy & Bimol Nath Roy & Md. Hasanuzzaman & Md. Shahinoor Islam & Ayman S. Abdel-Khalik & Mostaf S. Hamad & Shehab Ahmed, 2022. "Global Advancements and Current Challenges of Electric Vehicle Batteries and Their Prospects: A Comprehensive Review," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    4. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
    5. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    9. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    10. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    12. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.
    14. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    16. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    17. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Pinelopi Angelopoulou & Spyros Kassavetis & Joan Papavasiliou & Dimitris Karfaridis & Grzegorz Słowik & Panos Patsalas & George Avgouropoulos, 2021. "Enhanced Performance of LiAl 0.1 Mn 1.9 O 4 Cathode for Li-Ion Battery via TiN Coating," Energies, MDPI, vol. 14(4), pages 1-14, February.
    19. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1074-:d:215574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.