IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5230-d866374.html
   My bibliography  Save this article

Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models

Author

Listed:
  • Nandan Gopinathan

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • Prabhakar Karthikeyan Shanmugam

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

Abstract

The automobile sector is a promising avenue for enhancing energy security, economic opportunity, and air quality in India. Before penetrating a large number of electric vehicles (EV) into the power grid, a thorough investigation and assessment of significant parameters are required, as additional nonlinear and EV loads are linked to the decentralized market. Many automobile companies have already invested in electric vehicle research; hence, a detailed analysis on range anxiety and grid connectivity concerns are the important factors affecting the future of the electric vehicle industry. In this paper, the initial review is about the decentralized market in India and sustainable aspects of electric mobility based on the Indian context, as it is a developing nation with an enormous resource and scope for EV markets. With recent literature from the last three years, the substantial constraints observed in benefits and challenges are reviewed. The financial stability aspects and the incentives to overcome the barriers to EV adoption are briefly discussed. From the review, it has come to the limelight that infrastructure availability, technology, load demand, and consumer behaviour are all major obstacles in the electric vehicle ecosystem. For the overall design and study of the vehicle to grid (V2G) infrastructure, this paper also provides insight into the representation of electric vehicles in different energy-efficient models and their categorization while connecting to the grid. The methodology adopted for energy-efficient models includes lifecycle emissions, economy, smart charging, real-time optimization, aggregated EV resource modelling, and a support vector machine (SVM)-based method. This paper gives a positive impact on EV fleet integration and electric mobility in general, as it critically reviews the influential parameters and challenges. This classification depends on crucial parameters that are at the frontline of EV grid integration research. This review is a solution to enhance grid stability in regard to new EV models. With the advanced electric motors development and renewed battery technology models, longer-distance automobiles are now available on the market. This paper investigates the constraints of EV grid integration and analyzes different EV models to ease the grid stability for a decentralized market.

Suggested Citation

  • Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5230-:d:866374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    2. Chungmok Lee, 2021. "An exact algorithm for the electric-vehicle routing problem with nonlinear charging time," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(7), pages 1461-1485, July.
    3. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    4. Rachana Vidhi & Prasanna Shrivastava, 2018. "A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India," Energies, MDPI, vol. 11(3), pages 1-15, February.
    5. Hou, Rui & Lei, Lei & Jin, Kangning & Lin, Xiaogang & Xiao, Lu, 2022. "Introducing electric vehicles? Impact of network effect on profits and social welfare," Energy, Elsevier, vol. 243(C).
    6. Kucevic, Daniel & Englberger, Stefan & Sharma, Anurag & Trivedi, Anupam & Tepe, Benedikt & Schachler, Birgit & Hesse, Holger & Srinivasan, Dipti & Jossen, Andreas, 2021. "Reducing grid peak load through the coordinated control of battery energy storage systems located at electric vehicle charging parks," Applied Energy, Elsevier, vol. 295(C).
    7. Gabriel Antonio Salvatti & Emerson Giovani Carati & Rafael Cardoso & Jean Patric da Costa & Carlos Marcelo de Oliveira Stein, 2020. "Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids," Energies, MDPI, vol. 13(5), pages 1-22, March.
    8. Fowri, Hamid R. & Seyedabrishami, Seyedehsan, 2020. "Assessment of urban transportation pricing policies with incorporation of unobserved heterogeneity," Transport Policy, Elsevier, vol. 99(C), pages 12-19.
    9. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    10. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    11. Xiong, Yingqi & Wang, Bin & Chu, Chi-cheng & Gadh, Rajit, 2018. "Vehicle grid integration for demand response with mixture user model and decentralized optimization," Applied Energy, Elsevier, vol. 231(C), pages 481-493.
    12. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    13. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
    14. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    15. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
    16. Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "The market case for electric mobility: Investigating electric vehicle business models for mass adoption," Energy, Elsevier, vol. 194(C).
    17. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    19. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    20. Vitor Monteiro & Jose A. Afonso & Joao C. Ferreira & Joao L. Afonso, 2018. "Vehicle Electrification: New Challenges and Opportunities for Smart Grids," Energies, MDPI, vol. 12(1), pages 1-20, December.
    21. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    22. Gerardo Zarazua de Rubens & Lance Noel & Benjamin K. Sovacool, 2018. "Dismissive and deceptive car dealerships create barriers to electric vehicle adoption at the point of sale," Nature Energy, Nature, vol. 3(6), pages 501-507, June.
    23. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    24. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    25. Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
    26. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    27. Singh, Mitashi, 2020. "India’s shift from mass transit to MaaS transit: Insights from Kochi," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 219-227.
    28. Claire Weiller & Tianjiao Shang & Andy Neely & Yongjiang Shi, 2015. "Competing and co-existing business models for EV: lessons from international case studies," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 15(2), pages 126-148.
    29. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Georgios Zazias & Pantelis Capros, 2019. "Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment," Energies, MDPI, vol. 12(14), pages 1-25, July.
    30. Shrimali, Gireesh, 2021. "Getting to India's electric vehicle targets cost-effectively: To subsidize or not, and how?," Energy Policy, Elsevier, vol. 156(C).
    31. Alexandre Beaudet & François Larouche & Kamyab Amouzegar & Patrick Bouchard & Karim Zaghib, 2020. "Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    32. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    33. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    34. Crozier, Constance & Morstyn, Thomas & McCulloch, Malcolm, 2020. "The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems," Applied Energy, Elsevier, vol. 268(C).
    35. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    36. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    37. Heredia, Willy Bernal & Chaudhari, Kalpesh & Meintz, Andrew & Jun, Myungsoo & Pless, Shanti, 2020. "Evaluation of smart charging for electric vehicle-to-building integration: A case study," Applied Energy, Elsevier, vol. 266(C).
    38. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    39. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    40. Feyijimi Adegbohun & Annette von Jouanne & Kwang Y. Lee, 2019. "Autonomous Battery Swapping System and Methodologies of Electric Vehicles," Energies, MDPI, vol. 12(4), pages 1-14, February.
    41. Schoch, Jennifer & Gaerttner, Johannes & Schuller, Alexander & Setzer, Thomas, 2018. "Enhancing electric vehicle sustainability through battery life optimal charging," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 1-18.
    42. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    43. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    44. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    45. Hsu, Chih-Wei & Fingerman, Kevin, 2021. "Public electric vehicle charger access disparities across race and income in California," Transport Policy, Elsevier, vol. 100(C), pages 59-67.
    46. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asmita Ajay Rathod & Balaji Subramanian, 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities," Sustainability, MDPI, vol. 14(24), pages 1-35, December.
    2. Man Zhou & Uliana Pysmenna & Oleksandra Kubatko & Volodymyr Voloshchuk & Iryna Sotnyk & Galyna Trypolska, 2023. "Support for Household Prosumers in the Early Stages of Power Market Decentralization in Ukraine," Energies, MDPI, vol. 16(17), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    2. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    3. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    4. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Zhao, Xingrong & Ma, Ye & Shao, Shuai & Ma, Tieju, 2022. "What determines consumers' acceptance of electric vehicles: A survey in Shanghai, China," Energy Economics, Elsevier, vol. 108(C).
    6. Munshi, Talat & Dhar, Subash & Painuly, Jyoti, 2022. "Understanding barriers to electric vehicle adoption for personal mobility: A case study of middle income in-service residents in Hyderabad city, India," Energy Policy, Elsevier, vol. 167(C).
    7. Rayhane Koubaa & Yeliz Yoldas & Selcuk Goren & Lotfi Krichen & Ahmet Onen, 2021. "Implementation of cost benefit analysis of vehicle to grid coupled real Micro-Grid by considering battery energy wear: Practical study case," Energy & Environment, , vol. 32(7), pages 1292-1314, November.
    8. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    9. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    10. Konstantina Anastasiadou & Nikolaos Gavanas, 2022. "State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    11. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    12. Theodoros A. Skouras & Panagiotis K. Gkonis & Charalampos N. Ilias & Panagiotis T. Trakadas & Eleftherios G. Tsampasis & Theodore V. Zahariadis, 2019. "Electrical Vehicles: Current State of the Art, Future Challenges, and Perspectives," Clean Technol., MDPI, vol. 2(1), pages 1-16, December.
    13. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    14. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    15. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    16. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    17. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    18. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    19. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    20. Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5230-:d:866374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.