IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4821-d610276.html
   My bibliography  Save this article

Parameters Influencing on Electric Vehicle Range

Author

Listed:
  • Emilia M. Szumska

    (Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Rafał S. Jurecki

    (Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

There is a range of anxiety-related phenomena among users and potential buyers of electric vehicles. Chief among them is the fear of the vehicle stopping and its users getting “stuck” before reaching their designated destination. The limited range of an electric vehicle makes EV users worry that the battery will drain while driving and the vehicle will stall on the road. It is therefore important to know the factors that could further reduce the range during daily vehicle operation. The purpose of this study was to determine the effect of selected parameters on a battery’s depth of discharge (DOD). In a simulation study of an electric vehicle, the effects of the driving cycle, ambient temperature, load, and initial state of charge of the accumulator on the energy consumption pattern and a battery’s depth of discharge (DOD) were analyzed. The simulation results confirmed that the route taken has the highest impact on energy consumption. The presented results show how significantly the operating conditions of an electric vehicle affect the energy life. This translates into an electric vehicle’s range.

Suggested Citation

  • Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4821-:d:610276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2013. "Infrastructure Planning for Electric Vehicles with Battery Swapping," Management Science, INFORMS, vol. 59(7), pages 1557-1575, July.
    2. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    3. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    4. Guilherme Medeiros Soares de Andrade & Fernando Wesley Cavalcanti de Araújo & Maurício Pereira Magalhães de Novaes Santos & Fabio Santana Magnani, 2020. "Standardized Comparison of 40 Local Driving Cycles: Energy and Kinematics," Energies, MDPI, vol. 13(20), pages 1-20, October.
    5. Guozhong Liu & Li Kang & Zeyu Luan & Jing Qiu & Fenglei Zheng, 2019. "Charging Station and Power Network Planning for Integrated Electric Vehicles (EVs)," Energies, MDPI, vol. 12(13), pages 1-22, July.
    6. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    7. Guo, Fang & Yang, Jun & Lu, Jianyi, 2018. "The battery charging station location problem: Impact of users’ range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 1-18.
    8. Shaohua Cui & Hui Zhao & Huijie Wen & Cuiping Zhang, 2018. "Locating Multiple Size and Multiple Type of Charging Station for Battery Electricity Vehicles," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    9. Raphaela Pagany & Anna Marquardt & Roland Zink, 2019. "Electric Charging Demand Location Model—A User- and Destination-Based Locating Approach for Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    10. Rafał S. Jurecki & Tomasz L. Stańczyk, 2021. "A Methodology for Evaluating Driving Styles in Various Road Conditions," Energies, MDPI, vol. 14(12), pages 1-19, June.
    11. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    12. Milad Akbari & Morris Brenna & Michela Longo, 2018. "Optimal Locating of Electric Vehicle Charging Stations by Application of Genetic Algorithm," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalin Vrabie, 2022. "Electric Vehicles Optimism versus the Energy Market Reality," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    2. Mariusz Graba & Jarosław Mamala & Andrzej Bieniek & Andrzej Augustynowicz & Krystian Czernek & Andżelika Krupińska & Sylwia Włodarczak & Marek Ochowiak, 2023. "Assessment of Energy Demand for PHEVs in Year-Round Operating Conditions," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Marek Guzek & Rafał S. Jurecki & Wojciech Wach, 2022. "Vehicle and Traffic Safety," Energies, MDPI, vol. 15(13), pages 1-4, June.
    4. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    5. Manzolli, Jônatas Augusto & Trovão, João Pedro F. & Henggeler Antunes, Carlos, 2022. "Electric bus coordinated charging strategy considering V2G and battery degradation," Energy, Elsevier, vol. 254(PA).
    6. Xingxing Wang & Peilin Ye & Yujie Zhang & Hongjun Ni & Yelin Deng & Shuaishuai Lv & Yinnan Yuan & Yu Zhu, 2022. "Parameter Optimization Method for Power System of Medium-Sized Bus Based on Orthogonal Test," Energies, MDPI, vol. 15(19), pages 1-26, October.
    7. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
    8. Emilia M. Szumska, 2023. "Electric Vehicle Charging Infrastructure along Highways in the EU," Energies, MDPI, vol. 16(2), pages 1-18, January.
    9. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    10. Hamza Mediouni & Amal Ezzouhri & Zakaria Charouh & Khadija El Harouri & Soumia El Hani & Mounir Ghogho, 2022. "Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-17, September.
    11. Zeinab Teimoori & Abdulsalam Yassine, 2022. "A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation," Sustainability, MDPI, vol. 14(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    2. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    3. Bong-Gi Choi & Byeong-Chan Oh & Sungyun Choi & Sung-Yul Kim, 2020. "Selecting Locations of Electric Vehicle Charging Stations Based on the Traffic Load Eliminating Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    4. Anastasia Gorbunova & Ilya Anisimov & Elena Magaril, 2020. "Studying the Formation of the Charging Session Number at Public Charging Stations for Electric Vehicles," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    5. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    6. Emilia M. Szumska & Rafał Jurecki, 2022. "The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions," Energies, MDPI, vol. 15(24), pages 1-16, December.
    7. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    8. Zeinab Teimoori & Abdulsalam Yassine, 2022. "A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    9. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Shaohua Cui & Hui Zhao & Cuiping Zhang, 2018. "Locating Charging Stations of Various Sizes with Different Numbers of Chargers for Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-22, November.
    11. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2020. "A Method for the Optimization of Daily Activity Chains Including Electric Vehicles," Energies, MDPI, vol. 13(4), pages 1-21, February.
    12. Li Zhang & Ke Gong & Maozeng Xu, 2019. "Congestion Control in Charging Stations Allocation with Q-Learning," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
    13. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    14. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    16. Li, Kunpeng & Wang, Lan, 2023. "Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    17. Mario Porru & Alessandro Serpi & Mario Mureddu & Alfonso Damiano, 2020. "A Multistage Design Procedure for Planning and Implementing Public Charging Infrastructures for Electric Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    18. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    19. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    20. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4821-:d:610276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.