IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9369-d999863.html
   My bibliography  Save this article

The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions

Author

Listed:
  • Emilia M. Szumska

    (Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Rafał Jurecki

    (Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

The partial recovery of kinetic energy during braking allows the vehicle’s battery to be additionally charged and thus extends the range of an electric vehicle. Because of the different operating strategies of the braking energy recovery system, it is important to understand the factors influencing the level of recovered energy. The driving conditions at the place of use have a direct impact on the energy efficiency of an electric vehicle. The purpose of this paper was to analyze the energy recovered during braking in different driving conditions. The tests were based on the parameters of actual trips made along urban and suburban routes, and express roads. The collected actual speed profiles were used for the simulation studies. AVL cruise vehicle simulation software was used in the study. Simulation tests revealed that the levels of energy recovered during braking in an electric vehicle were the highest in urban conditions. The amount of energy recovered during urban driving can account for 20% of the total trip energy. In driving conditions characterized by different intensities caused by trips at different times of the day, similar values of recovered energy were recorded. When driving in the afternoon hours, the level of recovered energy per 1 km was about 2% lower than when driving in rush hour conditions. From the results presented in this paper, it can be concluded that driving conditions have an impact on the level of recovered energy. The type of road on which the electric vehicle drives is particularly important.

Suggested Citation

  • Emilia M. Szumska & Rafał Jurecki, 2022. "The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9369-:d:999863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafał S. Jurecki & Tomasz L. Stańczyk & Mateusz Ziubiński, 2022. "Analysis of the Structure of Driver Maneuvers in Different Road Conditions," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    3. Boshi Wang & Haitao Min & Weiyi Sun & Yuanbin Yu, 2021. "Research on Optimal Charging of Power Lithium-Ion Batteries in Wide Temperature Range Based on Variable Weighting Factors," Energies, MDPI, vol. 14(6), pages 1-21, March.
    4. Björnsson, Lars-Henrik & Karlsson, Sten, 2016. "The potential for brake energy regeneration under Swedish conditions," Applied Energy, Elsevier, vol. 168(C), pages 75-84.
    5. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    6. Boyi Xiao & Huazhong Lu & Hailin Wang & Jiageng Ruan & Nong Zhang, 2017. "Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis," Energies, MDPI, vol. 10(11), pages 1-19, November.
    7. Rafał S. Jurecki & Tomasz L. Stańczyk, 2021. "A Methodology for Evaluating Driving Styles in Various Road Conditions," Energies, MDPI, vol. 14(12), pages 1-19, June.
    8. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Guzek & Jerzy Jackowski & Rafał S. Jurecki & Emilia M. Szumska & Piotr Zdanowicz & Marcin Żmuda, 2024. "Electric Vehicles—An Overview of Current Issues—Part 2—Infrastructure and Road Safety," Energies, MDPI, vol. 17(2), pages 1-29, January.
    2. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    3. Peter Tapak & Michal Kocur & Juraj Matej, 2023. "On-Board Fuel Consumption Meter Field Testing Results," Energies, MDPI, vol. 16(19), pages 1-14, September.
    4. Marek Guzek & Jerzy Jackowski & Rafał S. Jurecki & Emilia M. Szumska & Piotr Zdanowicz & Marcin Żmuda, 2024. "Electric Vehicles—An Overview of Current Issues—Part 1—Environmental Impact, Source of Energy, Recycling, and Second Life of Battery," Energies, MDPI, vol. 17(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2021. "Review on Braking Energy Management in Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Boyi Xiao & Huazhong Lu & Hailin Wang & Jiageng Ruan & Nong Zhang, 2017. "Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis," Energies, MDPI, vol. 10(11), pages 1-19, November.
    4. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    5. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    6. Duo Zhang & Guohai Liu & Wenxiang Zhao & Penghu Miao & Yan Jiang & Huawei Zhou, 2014. "A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle," Energies, MDPI, vol. 7(7), pages 1-15, July.
    7. Jingang Guo & Xiaoping Jian & Guangyu Lin, 2014. "Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller," Energies, MDPI, vol. 7(10), pages 1-18, October.
    8. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    9. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    10. Marek Guzek & Rafał S. Jurecki & Wojciech Wach, 2022. "Vehicle and Traffic Safety," Energies, MDPI, vol. 15(13), pages 1-4, June.
    11. Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).
    12. Jinhyun Park & In Gyu Jang & Sung-Ho Hwang, 2018. "Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method: Driving Stability and Efficiency," Energies, MDPI, vol. 11(12), pages 1-22, December.
    13. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    14. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    15. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng & Li, Xiaoyu & Qu, Changhui, 2019. "Driving cycles construction for electric vehicles considering road environment: A case study in Beijing," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    17. Jinhyun Park & Houn Jeong & In Gyu Jang & Sung-Ho Hwang, 2015. "Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method," Energies, MDPI, vol. 8(8), pages 1-25, August.
    18. Shi, Dehua & Pisu, Pierluigi & Chen, Long & Wang, Shaohua & Wang, Renguang, 2016. "Control design and fuel economy investigation of power split HEV with energy regeneration of suspension," Applied Energy, Elsevier, vol. 182(C), pages 576-589.
    19. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9369-:d:999863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.