IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16814-d1003835.html
   My bibliography  Save this article

Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities

Author

Listed:
  • Asmita Ajay Rathod

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Balaji Subramanian

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

Abstract

To fulfill fast-growing energy needs, all energy sources should be utilized. Renewable energy is infinite and clean. However, its main disadvantage is that renewable energy sources are intermittent. A Hybrid Renewable Energy System (HRES) is built by integrating several distinct energy sources to deal with this problem. In regards to energy economy, economics, dependability, and flexibility, these hybrid systems can surpass the limits of individual energy producing technologies. The power capacity of HRESs increased from 700 GW to 3100 GW globally over the period 2000–2021. This study aimed to offer and analyze a comprehensive literature review of recently published works by several researchers in the area of HRESs. The HRES contains different Hybrid Energy Systems (HESs), which are categorized into three parts, namely, PV_Other, Wind_Other and PV_Wind_Other. These systems, based on different optimization techniques/software with techno-economic objective functions and constraints, are reviewed in this paper. The optimal sizing, control, and power management strategies of the HRES are elaborately discussed to harness its potential. It has been determined that Metaheuristic (MH) methods and HOMER software are mostly employed in the fields of HRES sizing, control, power management, and optimization. The review provides a critical analysis of the shortcomings of the existing HRES systems, while choosing optimization parameters, and control and power management schemes. Moreover, the study encapsulates the various challenges/barriers in adopting HRESs. Finally, this review highlights possible future opportunities for PV, Wind, and other HESs in the area of control, power management, optimization, and optimal sizing.

Suggested Citation

  • Asmita Ajay Rathod & Balaji Subramanian, 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities," Sustainability, MDPI, vol. 14(24), pages 1-35, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16814-:d:1003835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
    2. Markard, Jochen & Truffer, Bernhard, 2006. "Innovation processes in large technical systems: Market liberalization as a driver for radical change?," Research Policy, Elsevier, vol. 35(5), pages 609-625, June.
    3. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    4. Baurzhan, Saule & Jenkins, Glenn P., 2016. "Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1405-1418.
    5. Niveditha, N. & Rajan Singaravel, M.M., 2022. "Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden," Applied Energy, Elsevier, vol. 324(C).
    6. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    7. Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
    8. Ansari, Md. Fahim & Kharb, Ravinder Kumar & Luthra, Sunil & Shimmi, S.L. & Chatterji, S., 2013. "Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 163-174.
    9. Ghimire, Laxman Prasad & Kim, Yeonbae, 2018. "An analysis on barriers to renewable energy development in the context of Nepal using AHP," Renewable Energy, Elsevier, vol. 129(PA), pages 446-456.
    10. Li, Huanhuan & Zhang, Runfan & Mahmud, Md. Apel & Hredzak, Branislav, 2022. "A novel coordinated optimization strategy for high utilization of renewable energy sources and reduction of coal costs and emissions in hybrid hydro-thermal-wind power systems," Applied Energy, Elsevier, vol. 320(C).
    11. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    12. Vijay Mudgal & Preeti Singh & Sourav Khanna & Chandan Pandey & Victor Becerra & Tapas K. Mallick & K. S. Reddy, 2021. "Optimization of a novel Hybrid Wind Bio Battery Solar Photovoltaic System Integrated with Phase Change Material," Energies, MDPI, vol. 14(19), pages 1-21, October.
    13. Ermando Petracca & Emilio Faraggiana & Alberto Ghigo & Massimo Sirigu & Giovanni Bracco & Giuliana Mattiazzo, 2022. "Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System," Energies, MDPI, vol. 15(8), pages 1-28, April.
    14. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
    15. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    16. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    17. Kartal, Mustafa Tevfik, 2022. "The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries," Renewable Energy, Elsevier, vol. 184(C), pages 871-880.
    18. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "The impact of policy on microgrid economics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3111-3119.
    19. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    20. Ramakrishna S. S. Nuvvula & Devaraj Elangovan & Kishore Srinivasa Teegala & Rajvikram Madurai Elavarasan & Md. Rabiul Islam & Ravikiran Inapakurthi, 2021. "Optimal Sizing of Battery-Integrated Hybrid Renewable Energy Sources with Ramp Rate Limitations on a Grid Using ALA-QPSO," Energies, MDPI, vol. 14(17), pages 1-23, August.
    21. Jhan Piero Rojas & Gonzalo Romero Garc a & Dora Villada Castillo, 2022. "Economic and Environmental Multiobjective Optimization of a Hybrid Power Generation System using Solar and Wind Energy Source," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 494-499.
    22. Jong-Wook Kim & Heungju Ahn & Hyeon Cheol Seo & Sang Cheol Lee, 2022. "Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS)," Energies, MDPI, vol. 15(8), pages 1-15, April.
    23. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    24. Si, Yupeng & Wang, Rongjie & Zhang, Shiqi & Zhou, Wenting & Lin, Anhui & Zeng, Guangmiao, 2022. "Configuration optimization and energy management of hybrid energy system for marine using quantum computing," Energy, Elsevier, vol. 253(C).
    25. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    26. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    27. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    28. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    29. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    30. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    31. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2022. "Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem," Energies, MDPI, vol. 15(13), pages 1-26, June.
    32. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    33. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    34. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
    35. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    36. Marvin Barivure Sigalo & Ajit C. Pillai & Saptarshi Das & Mohammad Abusara, 2021. "An Energy Management System for the Control of Battery Storage in a Grid-Connected Microgrid Using Mixed Integer Linear Programming," Energies, MDPI, vol. 14(19), pages 1-14, September.
    37. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2010. "Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages," Renewable Energy, Elsevier, vol. 35(2), pages 520-535.
    38. Petrović, A. & Đurišić, Ž., 2021. "Genetic algorithm based optimized model for the selection of wind turbine for any site-specific wind conditions," Energy, Elsevier, vol. 236(C).
    39. Marcin Rabe & Yuriy Bilan & Katarzyna Widera & László Vasa, 2022. "Application of the Linear Programming Method in the Construction of a Mathematical Model of Optimization Distributed Energy," Energies, MDPI, vol. 15(5), pages 1-15, March.
    40. Ghiasi, Mohammad, 2019. "Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources," Energy, Elsevier, vol. 169(C), pages 496-507.
    41. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo Algarvio, 2023. "The Economic Sustainability of Variable Renewable Energy Considering the Negotiation of Different Support Schemes," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    2. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    3. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    4. Nagwa F. Ibrahim & Sid Ahmed El Mehdi Ardjoun & Mohammed Alharbi & Abdulaziz Alkuhayli & Mohamed Abuagreb & Usama Khaled & Mohamed Metwally Mahmoud, 2023. "Multiport Converter Utility Interface with a High-Frequency Link for Interfacing Clean Energy Sources (PV\Wind\Fuel Cell) and Battery to the Power System: Application of the HHA Algorithm," Sustainability, MDPI, vol. 15(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    2. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    3. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    4. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    6. Bahareh Oryani & Yoonmo Koo & Shahabaldin Rezania, 2020. "Structural Vector Autoregressive Approach to Evaluate the Impact of Electricity Generation Mix on Economic Growth and CO 2 Emissions in Iran," Energies, MDPI, vol. 13(16), pages 1-16, August.
    7. Asante, Dennis & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adjei-Darko, Peter & Asante, Bismark & Fosu, Edward & Dankwah, Dennis Ampah & Amoh, Prince Oppong, 2022. "Prioritizing strategies to eliminate barriers to renewable energy adoption and development in Ghana: A CRITIC-fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 195(C), pages 47-65.
    8. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    10. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    11. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    14. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    15. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    16. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    17. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    19. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    20. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16814-:d:1003835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.