IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4268-d400488.html
   My bibliography  Save this article

Structural Vector Autoregressive Approach to Evaluate the Impact of Electricity Generation Mix on Economic Growth and CO 2 Emissions in Iran

Author

Listed:
  • Bahareh Oryani

    (Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Yoonmo Koo

    (Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
    Graduate School of Engineering Practice, Seoul National University, Seoul 08826, Korea)

  • Shahabaldin Rezania

    (Department of Environment and Energy, Sejong University, Seoul 05006, Korea)

Abstract

This research attempts to evaluate the impact of renewable electricity generation mix on economic growth and CO 2 emissions in Iran from 1980 to 2016. In this regard, by using EViews 10, the Structural Vector Autoregressive model (SVAR) is estimated by imposing the Blanchard and Quah long-run restrictions. The yearly data on real Gross Domestic Production (GDP), the share of electricity generation from renewable sources, and carbon dioxide emissions (CO 2 ) caused by liquid, solid, and gaseous fuels were used. The positive impact of one standard deviation shock of increasing the share of renewable electricity on economic growth was confirmed by using Impulse Response Function (IRF). Contrary to the expectation, the share of renewable electricity in the energy mix is not at a desirable level to lower CO 2 emissions, which partly could be explained by the dominant role of fossil fuel in Iran (as an energy-driven country). Moreover, the findings of Variance Decomposition (VD) verified the low share of electricity generated by renewable energy in explaining forecast error variations in economic growth and CO 2 emissions. It indicates that in this stage of development, increasing the share of renewable electricity could not be considered as an appropriate strategy to control environmental issues. Therefore, initiating and implementing environmental policies could be considered as the most proper policies to lower CO 2 emissions and to achieve the goal of sustainable development.

Suggested Citation

  • Bahareh Oryani & Yoonmo Koo & Shahabaldin Rezania, 2020. "Structural Vector Autoregressive Approach to Evaluate the Impact of Electricity Generation Mix on Economic Growth and CO 2 Emissions in Iran," Energies, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4268-:d:400488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Susana Silva & Isabel Soares & Carlos Pinho, 2011. "The impact of renewable energy sources on economic growth and CO2 emissions - a SVAR approach," FEP Working Papers 407, Universidade do Porto, Faculdade de Economia do Porto.
    5. Ansari, Md. Fahim & Kharb, Ravinder Kumar & Luthra, Sunil & Shimmi, S.L. & Chatterji, S., 2013. "Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 163-174.
    6. Ghimire, Laxman Prasad & Kim, Yeonbae, 2018. "An analysis on barriers to renewable energy development in the context of Nepal using AHP," Renewable Energy, Elsevier, vol. 129(PA), pages 446-456.
    7. Ito, Katsuya, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, Elsevier, vol. 151(C), pages 1-6.
    8. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    9. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    10. Pegels, Anna, 2010. "Renewable energy in South Africa: Potentials, barriers and options for support," Energy Policy, Elsevier, vol. 38(9), pages 4945-4954, September.
    11. Richard H. Clarida & Jordi Gali, 1994. "Sources of real exchange rate fluctuations: how important are nominal shocks?," Proceedings, Federal Reserve Bank of Dallas, issue Apr.
    12. Susana Silva & Isabel Soares & Carlos Pinho, 2012. "The Impact of Renewable Energy Sources on Economic Growth and CO2 Emissions - a SVAR approach," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 133-144.
    13. Nalan, Çiçek Bezir & Murat, Öztürk & Nuri, Özek, 2009. "Renewable energy market conditions and barriers in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1428-1436, August.
    14. Elbourne, Adam, 2008. "The UK housing market and the monetary policy transmission mechanism: An SVAR approach," Journal of Housing Economics, Elsevier, vol. 17(1), pages 65-87, March.
    15. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    16. Aviral Kumar Tiwari, 2011. "A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India," Economics Bulletin, AccessEcon, vol. 31(2), pages 1793-1806.
    17. Olivier J. Blanchard & Mark W. Watson, 1986. "Are Business Cycles All Alike?," NBER Chapters, in: The American Business Cycle: Continuity and Change, pages 123-180, National Bureau of Economic Research, Inc.
    18. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    19. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 10(Win), pages 2-16.
    20. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    21. Eleftheriadis, Iordanis M. & Anagnostopoulou, Evgenia G., 2015. "Identifying barriers in the diffusion of renewable energy sources," Energy Policy, Elsevier, vol. 80(C), pages 153-164.
    22. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    23. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    24. Al-mulali, Usama & Tang, Chor Foon & Ozturk, Ilhan, 2015. "Estimating the Environment Kuznets Curve hypothesis: Evidence from Latin America and the Caribbean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 918-924.
    25. Panayotou T., 1993. "Empirical tests and policy analysis of environmental degradation at different stages of economic development," ILO Working Papers 992927783402676, International Labour Organization.
    26. Nourry, Myriam, 2008. "Measuring sustainable development: Some empirical evidence for France from eight alternative indicators," Ecological Economics, Elsevier, vol. 67(3), pages 441-456, October.
    27. Olugbenga A. Onafowora & Oluwole Owoye, 2015. "Structural Vector Auto Regression Analysis of the Dynamic Effects of Shocks in Renewable Electricity Generation on Economic Output and Carbon Dioxide Emissions: China, India and Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1022-1032.
    28. repec:ers:journl:v:xv:y:2012:i:sie:p:133-144 is not listed on IDEAS
    29. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575.
    30. Mirza, Umar K. & Ahmad, Nasir & Harijan, Khanji & Majeed, Tariq, 2009. "Identifying and addressing barriers to renewable energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 927-931, May.
    31. Fadai, Dawud & Esfandabadi, Zahra Shams & Abbasi, Azadeh, 2011. "Analyzing the causes of non-development of renewable energy-related industries in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2690-2695, August.
    32. Jahangoshai Rezaee, Mustafa & Yousefi, Samuel & Hayati, Jamileh, 2019. "Root barriers management in development of renewable energy resources in Iran: An interpretative structural modeling approach," Energy Policy, Elsevier, vol. 129(C), pages 292-306.
    33. Hdom, Hélde A.D., 2019. "Examining carbon dioxide emissions, fossil & renewable electricity generation and economic growth: Evidence from a panel of South American countries," Renewable Energy, Elsevier, vol. 139(C), pages 186-197.
    34. Katsuya Ito, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, CEPII research center, issue 151, pages 1-6.
    35. Ahmed, Khalid & Mahalik, Mantu Kumar & Shahbaz, Muhammad, 2016. "Dynamics between economic growth, labor, capital and natural resource abundance in Iran: An application of the combined cointegration approach," Resources Policy, Elsevier, vol. 49(C), pages 213-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oryani, Bahareh & Kamyab, Hesam & Mоridiаn, Аli & Azizi, Zahra & Rezania, Shahabaldin & Chelliapan, Shreeshivadasan, 2022. "Does structural change boost the energy demand in a fossil fuel-driven economy? New evidence from Iran," Energy, Elsevier, vol. 254(PC).
    2. Radim Rybár & Martin Beer & Tawfik Mudarri & Sergey Zhironkin & Kamila Bačová & Jaroslav Dugas, 2021. "Experimental Evaluation of an Innovative Non-Metallic Flat Plate Solar Collector," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    4. Jean Pierre Namahoro & Qiaosheng Wu & Haijun Xiao & Na Zhou, 2021. "The Impact of Renewable Energy, Economic and Population Growth on CO 2 Emissions in the East African Region: Evidence from Common Correlated Effect Means Group and Asymmetric Analysis," Energies, MDPI, vol. 14(2), pages 1-21, January.
    5. Hlongwane, Nyiko Worship & Daw, Olebogeng David, 2021. "An increase of electricity generation can lead to economic growth in South Africa," MPRA Paper 111018, University Library of Munich, Germany.
    6. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Investigating the asymmetric impact of energy consumption on reshaping future energy policy and economic growth in Iran using extended Cobb-Douglas production function," Energy, Elsevier, vol. 216(C).
    7. Hlongwane, Nyiko Worship & Daw, Olebogeng David, 2021. "The challenges and opportunities of electricity generation on economic growth in South Africa: An ARDL approach," MPRA Paper 110963, University Library of Munich, Germany.
    8. Tayebeh Sadat Tabatabaei & Pedram Asef, 2021. "Evaluation of Energy Price Liberalization in Electricity Industry: A Data-Driven Study on Energy Economics," Energies, MDPI, vol. 14(22), pages 1-19, November.
    9. Nyiko Worship Hlongwane & Olebogeng David Daw, 2022. "The Challenges and Opportunities of Electricity Generation on Economic Growth in South Africa: An ARDL Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 164-174, March.
    10. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Loredana Maria Paunescu & MD Shabbir Alam & Rafael Alvarado, 2021. "The Energy Mix Dilemma and Environmental Sustainability: Interaction among Greenhouse Gas Emissions, Nuclear Energy, Urban Agglomeration, and Economic Growth," Energies, MDPI, vol. 14(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    2. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    3. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    4. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    5. Paul Terhemba Iorember & Gideon G. Goshit & Dalis T. Dabwor, 2020. "Testing the nexus between renewable energy consumption and environmental quality in Nigeria: The role of broad‐based financial development," African Development Review, African Development Bank, vol. 32(2), pages 163-175, June.
    6. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2 emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing, vol. 46(1), pages 106-168, January.
    7. Muhammad Nasir & Wasim Malik, 2011. "Structural Decomposition of Exchange Rate Shocks in Pakistan: An Empirical Investigation using SVAR Methodology," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 18(1), pages 124-138, September.
    8. Asante, Dennis & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adjei-Darko, Peter & Asante, Bismark & Fosu, Edward & Dankwah, Dennis Ampah & Amoh, Prince Oppong, 2022. "Prioritizing strategies to eliminate barriers to renewable energy adoption and development in Ghana: A CRITIC-fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 195(C), pages 47-65.
    9. Muhammad Farhan Bashir & Benjiang MA & Muhammad Shahbaz & Zhilun Jiao, 2020. "The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    10. Khadiga Mohamed El-Aasar & Shaimaa A. Hanafy, 2018. "Investigating the Environmental Kuznets Curve Hypothesis in Egypt: The Role of Renewable Energy and Trade in Mitigating GHGs," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 177-184.
    11. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    12. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    13. Gahn, Santiago José, 2021. "On the adjustment of capacity utilisation to aggregate demand: Revisiting an old Sraffian critique to the Neo-Kaleckian model," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 325-360.
    14. Marek Rusnak & Tomas Havranek & Roman Horvath, 2013. "How to Solve the Price Puzzle? A Meta-Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(1), pages 37-70, February.
    15. Evans, Charles L. & Marshall, David A., 1998. "Monetary policy and the term structure of nominal interest rates: Evidence and theory," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 53-111, December.
    16. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    17. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    18. Carlos J. García & Andrés Sagner, 2011. "Crédito, Exceso de toma de Riesgo, Costo de Crédito y ciclo Económico en Chile," Working Papers Central Bank of Chile 645, Central Bank of Chile.
    19. Aslan, Alper & Destek, Mehmet Akif & Okumus, İlyas, 2017. "Sectoral carbon emissions and economic growth in the US: Further evidence from rolling window estimation method," MPRA Paper 106961, University Library of Munich, Germany.
    20. Shioji, Etsuro, 2000. "Identifying Monetary Policy Shocks in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 14(1), pages 22-42, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4268-:d:400488. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.