IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6240-d647738.html
   My bibliography  Save this article

Experimental Evaluation of an Innovative Non-Metallic Flat Plate Solar Collector

Author

Listed:
  • Radim Rybár

    (Institute of Earth Sources, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Martin Beer

    (Institute of Earth Sources, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Tawfik Mudarri

    (Institute of Earth Sources, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Sergey Zhironkin

    (Institute of Trade and Economy, Siberian Federal University, Svobodny Av. 79, 660041 Krasnoyarsk, Russia
    School of Core Engineering Education, National Research Tomsk Polytechnic University, Lenina St. 30, 634050 Tomsk, Russia
    Mezhdurechensk Branch, T.F. Gorbachev Kuzbass State Technical University, 36 Stroiteley St., 652881 Mezhdurechensk, Russia)

  • Kamila Bačová

    (Institute of Earth Sources, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Jaroslav Dugas

    (Institute of Earth Sources, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

Abstract

The present article deals with the concept of the non-metallic flat plate liquid solar collector and its evaluation. The innovative concept lies in the elimination of metal parts of the solar collector and their replacement by the foam glass block, which significantly reduces the energy and material demands of the production process. The evaluation of the collector took place in two phases, the first was focused on the numerical evaluation, which resulted in the compilation of a theoretical curve of the efficiency of the solar collector. The second phase was focused on verifying the basic functionality of the concept based on the results obtained from experimental tests of the collector, which confirmed the functionality of the concept and revealed several areas that will need to be addressed in the further development of the prototype.

Suggested Citation

  • Radim Rybár & Martin Beer & Tawfik Mudarri & Sergey Zhironkin & Kamila Bačová & Jaroslav Dugas, 2021. "Experimental Evaluation of an Innovative Non-Metallic Flat Plate Solar Collector," Energies, MDPI, vol. 14(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6240-:d:647738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    2. Bahareh Oryani & Yoonmo Koo & Shahabaldin Rezania, 2020. "Structural Vector Autoregressive Approach to Evaluate the Impact of Electricity Generation Mix on Economic Growth and CO 2 Emissions in Iran," Energies, MDPI, vol. 13(16), pages 1-16, August.
    3. Salman Ajib & Ali Alahmer, 2019. "Solar Cooling Technologies," Chapters, in: Ibrahim H. Al-Bahadly (ed.), Energy Conversion - Current Technologies and Future Trends, IntechOpen.
    4. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
    5. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    6. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    7. Ahn, Kwangwon & Chu, Zhuang & Lee, Daeyong, 2021. "Effects of renewable energy use in the energy mix on social welfare," Energy Economics, Elsevier, vol. 96(C).
    8. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    9. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    12. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    13. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    14. Vogt Gwerder, Yvonne & Marques, Pedro & Dias, Luis C. & Freire, Fausto, 2019. "Life beyond the grid: A Life-Cycle Sustainability Assessment of household energy needs," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando del Ama Gonzalo & Belén Moreno Santamaría & Juan A. Hernández Ramos, 2022. "Assessment of Water Flow Glazing as Building-Integrated Solar Thermal Collector," Sustainability, MDPI, vol. 15(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barone, Giovanni & Buonomano, Annamaria & Kalogirou, Soteris & Ktistis, Panayiotis & Palombo, Adolfo, 2024. "A holistic methodology for designing novel flat plate evacuated solar thermal collectors: Modelling and experimental assessment," Renewable Energy, Elsevier, vol. 232(C).
    2. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    3. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    4. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.
    5. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    6. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    7. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    8. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    9. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    10. Armenia Androniceanu & Irina Georgescu & Ionuț Nica & Nora Chiriță, 2023. "A Comprehensive Analysis of Renewable Energy Based on Integrating Economic Cybernetics and the Autoregressive Distributed Lag Model—The Case of Romania," Energies, MDPI, vol. 16(16), pages 1-28, August.
    11. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    12. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    13. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    14. Le Thanh Tiep & Ngo Quang Huan & Tran Thi Thuy Hong, 2020. "The Impact of Renewable Energy on Sustainable Economic Growth in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 359-369.
    15. Fei Li & Chao Wang & Kecheng Li & Xin Wang & Dongsheng Yu & Herbert H. C. Iu, 2020. "FSK-Based Energy and Signal Composite Modulation Strategy for Switched Reluctance Drive System," Energies, MDPI, vol. 13(13), pages 1-21, July.
    16. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    17. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    18. Breen, Benjamin & Vega, Amaya & Feo-Valero, Maria, 2015. "An empirical analysis of mode and route choice for international freight transport in Ireland," Working Papers 262587, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    19. Cao, Yan & Hashemian, Mehran & Ayed, Hamdi & Shawabkeh, Ali & Issakhov, Alibek & Wae-hayee, Makatar, 2022. "Design-eligibility study of solar thermal helically coiled heat exchanging system with annular dimples by irreversibility concept," Renewable Energy, Elsevier, vol. 183(C), pages 369-384.
    20. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6240-:d:647738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.