IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp695-705.html
   My bibliography  Save this article

Green science: Independent building technology to mitigate energy, environment, and climate change

Author

Listed:
  • Hossain, Md. Faruque

Abstract

All residential and commercial buildings are connected to conventional electricity, gas, and water supply lines to meet their vital needs, which causes severe environmental crises. Therefore, a green science application is proposed in this article to meet the total energy, water, and gas demands for a building, which can be produced by the building itself without any outside connections and is also 100% clean. To meet 100% of the energy demands of a building, a design theory is implemented wherein at least 25% of the exterior curtain wall skin and roof is used as a blackbody assisted photovoltaic (PV) panel to capture solar energy and convert it to electricity. The domestic water supply is provided by in-house treatment processes (filtration, chlorination, UV treatment and purification) from in-situ groundwater extraction by PV-panel-assisted pumping. Subsequently, the domestic waste undergoes a transformation process wherein sludge, consisting mainly of human feces, is collected in a closed anaerobic detention tank in a cellar and introduced into a bioreactor, enabling the production of biogas by methanogenesis; this biogas is then stored and used for cooking and HVAC equipment. Finally, the separated wastewater is treated in the cellar by applying primary, secondary, and tertiary processes and is then used for gardening, irrigation, and landscaping. The combination of these technologies, wherein a building can produce electricity, water, and gas without outside connections, is a major scientific innovation expected to dramatically mitigate the global energy, environmental, and climate change crises.

Suggested Citation

  • Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:695-705
    DOI: 10.1016/j.rser.2017.01.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117301387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    2. Kane, M. & Larrain, D. & Favrat, D. & Allani, Y., 2003. "Small hybrid solar power system," Energy, Elsevier, vol. 28(14), pages 1427-1443.
    3. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    4. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    5. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2016. "Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 33-61.
    6. Gaillard, A. & Poure, P. & Saadate, S. & Machmoum, M., 2009. "Variable speed DFIG wind energy system for power generation and harmonic current mitigation," Renewable Energy, Elsevier, vol. 34(6), pages 1545-1553.
    7. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    8. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    2. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    3. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    4. Qazi, Sajid Hussain & Mustafa, Mohd Wazir, 2016. "Review on active filters and its performance with grid connected fixed and variable speed wind turbine generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 420-438.
    5. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    6. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    7. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    8. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    9. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    10. Song, Jeonghun & Oh, Si-Doek & Yoo, Yungpil & Seo, Seok-Ho & Paek, Insu & Song, Yuan & Song, Seung Jin, 2018. "System design and policy suggestion for reducing electricity curtailment in renewable power systems for remote islands," Applied Energy, Elsevier, vol. 225(C), pages 195-208.
    11. Jing Li & Wei Wei & Ji Xiang, 2012. "A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids," Energies, MDPI, vol. 5(12), pages 1-17, December.
    12. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    14. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    16. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    17. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    18. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    19. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    20. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:695-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.