IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308458.html
   My bibliography  Save this article

Multi-Objective optimisation of a micro-grid hybrid power system for household application

Author

Listed:
  • Jaszczur, Marek
  • Hassan, Qusay
  • Palej, Patryk
  • Abdulateef, Jasim

Abstract

This research study aimed to design and optimise hybrid renewable energy systems at two optimisation objectives. The economic and environmental optimisation objectives of four hybrid power system scenarios were tested based on a non-dominated sorting genetic algorithm. The selected optimisation objectives were used simultaneously and parallel to sensitivity analysis in order to determine optimum system configuration under specific criteria. The environmental objective targeted the reduction of CO2 emissions, which resulted in a system with high renewable energy fractions. The economic objective targeted the reduction of system cost (net percentage cost), which resulted in a system size that could meet desired electrical loads. The novelty of this work lay in determining the relationship between two different optimisation objectives i.e., environmental and economic. Result showed that the optimisation process under the economic objective recorded the lowest energy cost for all scenarios with and without storage units. By contrast, the optimisation process under the environmental objective demonstrated a higher system cost value compared with that in the case of the economic optimisation objective for all scenarios. The analysis also shows the CO2 emission with and without considering systems components manufacturing primary emissions.

Suggested Citation

  • Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308458
    DOI: 10.1016/j.energy.2020.117738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    2. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    3. Kamel, Sami & Dahl, Carol, 2005. "The economics of hybrid power systems for sustainable desert agriculture in Egypt," Energy, Elsevier, vol. 30(8), pages 1271-1281.
    4. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    5. Dawoud, Samir M. & Lin, Xiangning & Okba, Merfat I., 2018. "Hybrid renewable microgrid optimization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2039-2052.
    6. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    7. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    8. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    9. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    10. Chauhan, Anurag & Saini, R.P., 2017. "Size optimization and demand response of a stand-alone integrated renewable energy system," Energy, Elsevier, vol. 124(C), pages 59-73.
    11. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2012. "The feasibility of hybrid solar-biomass power plants in India," Energy, Elsevier, vol. 46(1), pages 541-554.
    12. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    13. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    14. Wang, Rui & Purshouse, Robin C. & Fleming, Peter J., 2015. "Preference-inspired co-evolutionary algorithms using weight vectors," European Journal of Operational Research, Elsevier, vol. 243(2), pages 423-441.
    15. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    16. Bakos, George C., 2002. "Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production," Applied Energy, Elsevier, vol. 72(3-4), pages 599-608, July.
    17. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    18. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    19. Abdelkader, Abbassi & Rabeh, Abbassi & Mohamed Ali, Dami & Mohamed, Jemli, 2018. "Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage," Energy, Elsevier, vol. 163(C), pages 351-363.
    20. Roberts, Justo José & Marotta Cassula, Agnelo & Silveira, José Luz & da Costa Bortoni, Edson & Mendiburu, Andrés Z., 2018. "Robust multi-objective optimization of a renewable based hybrid power system," Applied Energy, Elsevier, vol. 223(C), pages 52-68.
    21. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    22. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    23. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    24. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    25. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    26. Tom Wigley, 2011. "Coal to gas: the influence of methane leakage," Climatic Change, Springer, vol. 108(3), pages 601-608, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2022. "Evaluation of temporal resolution impact on power fluctuations and self-consumption for a hydrokinetic on grid system using supercapacitors," Renewable Energy, Elsevier, vol. 193(C), pages 843-856.
    2. Qusay Hassan & Marek Jaszczur, 2021. "Self-Consumption and Self-Sufficiency Improvement for Photovoltaic System Integrated with Ultra-Supercapacitor," Energies, MDPI, vol. 14(23), pages 1-15, November.
    3. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Schmid, Fabian & Winzer, Joscha & Pasemann, André & Behrendt, Frank, 2021. "An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location," Energy, Elsevier, vol. 219(C).
    6. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
    7. Jaszczur, Marek & Hassan, Qusay, 2020. "An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption," Applied Energy, Elsevier, vol. 279(C).
    8. Robert Kaczmarczyk & Sebastian Gurgul, 2021. "A Thermodynamic Analysis of Heavy Hydrocarbons Reforming for Solid Oxide Fuel Cell Application as a Part of Hybrid Energy Systems," Energies, MDPI, vol. 14(2), pages 1-11, January.
    9. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Ceran, Bartosz & Mielcarek, Agata & Hassan, Qusay & Teneta, Janusz & Jaszczur, Marek, 2021. "Aging effects on modelling and operation of a photovoltaic system with hydrogen storage," Applied Energy, Elsevier, vol. 297(C).
    11. Hassan, Qusay, 2021. "Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification," Renewable Energy, Elsevier, vol. 164(C), pages 375-390.
    12. Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    2. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    4. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    5. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    6. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    7. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    9. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    10. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    11. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    12. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    13. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    14. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    16. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    17. Chennaif, Mohammed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2021. "Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage," Energy, Elsevier, vol. 227(C).
    18. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    19. Duchaud, Jean-Laurent & Notton, Gilles & Fouilloy, Alexis & Voyant, Cyril, 2019. "Hybrid renewable power plant sizing – Graphical decision tool, sensitivity analysis and applications in Ajaccio and Tilos," Applied Energy, Elsevier, vol. 254(C).
    20. Zhang, Weiping & Maleki, Akbar & Rosen, Marc A. & Liu, Jingqing, 2018. "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage," Energy, Elsevier, vol. 163(C), pages 191-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.