IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220326529.html
   My bibliography  Save this article

An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location

Author

Listed:
  • Schmid, Fabian
  • Winzer, Joscha
  • Pasemann, André
  • Behrendt, Frank

Abstract

A fundamental understanding of the sizing process is a key element for sizing affordable, reliable, and sustainable nano/micro-off-grid systems. Nevertheless, the openness and transparency of modeling approaches are still low and open-source tools are scarce in this field. In this study, an open-source modeling tool for the optimization of renewable nano/micro-off-grid power supply systems is developed. System component models based on datasheets consider dynamic and time-dependent influencing factors. The modeling tool uses a multi-objective optimization based on the Non-Sorting-Genetic-Algorithm-II aiming at minimizing costs and load outage. For a better understanding of the sizing process, the influence of temporal resolution, simulation period, and location on the Pareto-optimal fronts is analyzed. The system location and by that irradiance, ambient temperature, and wind speed shows to be the strongest influence factor, which leads up to 2–5 times higher costs for achieving the same security of energy supply. While a higher temporal resolution increases the costs and load outages due to a more realistic illustration of energy production and demand, a shorter simulation period shows an increase in the system costs but a reduction of load outages because of the non-observance of component replacement, its cost reduction, and degradation.

Suggested Citation

  • Schmid, Fabian & Winzer, Joscha & Pasemann, André & Behrendt, Frank, 2021. "An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326529
    DOI: 10.1016/j.energy.2020.119545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    2. Bordin, Chiara & Anuta, Harold Oghenetejiri & Crossland, Andrew & Gutierrez, Isabel Lascurain & Dent, Chris J. & Vigo, Daniele, 2017. "A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration," Renewable Energy, Elsevier, vol. 101(C), pages 417-430.
    3. Wright, Andrew & Firth, Steven, 2007. "The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations," Applied Energy, Elsevier, vol. 84(4), pages 389-403, April.
    4. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    5. Matteo Moncecchi & Claudio Brivio & Stefano Mandelli & Marco Merlo, 2020. "Battery Energy Storage Systems in Microgrids: Modeling and Design Criteria," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    7. Muhammad Sufyan & Nasrudin Abd Rahim & ChiaKwang Tan & Munir Azam Muhammad & Siti Rohani Sheikh Raihan, 2019. "Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-28, February.
    8. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    9. Notton, G. & Lazarov, V. & Stoyanov, L., 2010. "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations," Renewable Energy, Elsevier, vol. 35(2), pages 541-554.
    10. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    11. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    12. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
    13. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    14. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    15. Rampinelli, G.A. & Krenzinger, A. & Chenlo Romero, F., 2014. "Mathematical models for efficiency of inverters used in grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 578-587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2022. "Evaluation of temporal resolution impact on power fluctuations and self-consumption for a hydrokinetic on grid system using supercapacitors," Renewable Energy, Elsevier, vol. 193(C), pages 843-856.
    2. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    3. Xiao Ya Deng, 2022. "Multi-Objective Optimization Information Fusion and Its Applications for Logistics Centers Maximum Coverage," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 15(2), pages 1-12, April.
    4. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    5. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.
    2. Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
    3. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    5. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    6. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    7. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    8. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    10. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    11. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    12. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    13. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    14. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    15. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    16. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    17. Yu, Hyun Jin Julie, 2017. "Virtuous cycle of solar photovoltaic development in new regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1357-1366.
    18. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    19. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    20. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.