IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006219.html
   My bibliography  Save this article

Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development

Author

Listed:
  • Adefarati, T.
  • Bansal, R.C.
  • Naidoo, R.
  • Onaolapo, K.A.
  • Bettayeb, M.
  • Olulope, P.K.
  • Sobowale, A.A.

Abstract

The recent persistent power interruption in Nigeria has significantly disrupted commercial activities, resulting in a magnificent economic loss, supply chain ripples and revenue loss. As a result, harnessing renewable energy sources to generate electricity has become a popular choice for satisfying ever-increasing load demand and reducing apprehensions on global warming and reliance on depleted fossil fuels. The goal of this research is to determine whether powering a remote community with a hybrid energy system (HES) is technologically, financially and environmentally viable. The optimum design of a standalone HES with the diesel generator (DG), photovoltaic (PV) and battery storage system (BSS) is provided in this study to satisfy the electrical power needs of a farm settlement in Kura, Nigeria by considering generation constraints and load demand. This research work presents a genetic algorithm (GA) to minimize wearing cost of the system (WCS), minimize the land needed for the installation of the DG and PV system, minimize the total annual cost of the system (TAC) and maximize the benefit to cost ratio and revenue from electricity consumption. The findings of the research showed that PV/BSS/DG system is a prospective solution to satisfy the load requirements with least TAC of 67374 $/yr, annual maintenance cost (AMC) of 2808.2 $/yr, annual fuel cost (AFC) of 32300 $/yr and annual emission cost (AEC) of 774.2023 $/yr. The outcomes of the study show that a considerable TAC, AMC, AFC and AEC savings of 26766 $/yr (28.43 %), 2808.2 $/yr (53.09 %), 32300 $/yr (25.4 %) and 774.2023 $/yr (60.69 %) are recorded when compared with using DG alone. The control approach applied in this study has reduced the operational capacity of the DG and prevented about 41157 kg/yr, 419.19 kg/yr and 22.52 kg/yr of CO2, NOx and SO2 emissions from being injected into the atmosphere. The simulation outcomes of the research demonstrate that the developed model can significantly reduce cost of electricity in rural communities with the application of HES. Hence, a 45.36 % cost of energy saving has been accomplished through the energy management system introduced in the proposed HES. The study's outcomes can be used as benchmarks to help many countries to enhance access to electricity, raise their living standards and stimulate economic growth. The application of the proposed HES in remote communities can result in greater economic and environmental benefits to a general population of rural dwellers. The findings of the research work are beneficial to designers, independent power providers, investors, researchers and electricity consumers that are looking for a feasible power solution.

Suggested Citation

  • Adefarati, T. & Bansal, R.C. & Naidoo, R. & Onaolapo, K.A. & Bettayeb, M. & Olulope, P.K. & Sobowale, A.A., 2024. "Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006219
    DOI: 10.1016/j.renene.2024.120556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.