IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225007558.html
   My bibliography  Save this article

Optimal configuration of a stand-alone PV/diesel/battery hybrid energy system based on modified PSO for a translational sprinkler irrigation machine applied in remote and water-scarce areas

Author

Listed:
  • Liu, Kenan
  • Cai, Yaohui
  • Sun, Wei
  • Feng, Quan
  • Wang, Guanping
  • Yang, Wanxia

Abstract

The crops in remote and water-scarce areas of northwest China need help with irrigation. Translational sprinkler irrigation machines (TSIMs) have advantages in crop irrigation in remote and water-scarce areas, which can save energy while conserving water. This article presents a self-developed TSIM, and a stand-alone photovoltaic (PV)/diesel/battery hybrid energy system is introduced to supply power for the TSIM. Considering the loss of power supply probability (LPSP) and CO2 emission, an optimization model is established, in which the life cycle cost (LCC) of the hybrid energy system is taken as the objective function. Then, the modified PSO algorithm, which combines the Chebyshev chaotic mapping with the standard PSO algorithm, is used to obtain the optimal configuration of the hybrid energy system. Compared to several optimization algorithms, the modified PSO performs well in optimization. Through calculation, the optimal configuration was obtained. In addition, the LCC of the hybrid energy system is compared with that of the PV/battery system. The results indicate that the LCC of the hybrid energy system is only about 1/3 of that of the PV/battery system. Finally, the effectiveness of the optimal configuration is verified through two typical weather conditions. The optimal configuration in this article can provide a theoretical basis for the power supply for translational sprinkler irrigation.

Suggested Citation

  • Liu, Kenan & Cai, Yaohui & Sun, Wei & Feng, Quan & Wang, Guanping & Yang, Wanxia, 2025. "Optimal configuration of a stand-alone PV/diesel/battery hybrid energy system based on modified PSO for a translational sprinkler irrigation machine applied in remote and water-scarce areas," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007558
    DOI: 10.1016/j.energy.2025.135113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. He, Li & Zhang, Shiyue & Chen, Yizhong & Ren, Lixia & Li, Jing, 2018. "Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 631-641.
    2. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    3. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    4. Kenan Liu & Bugong Sun & Xiaoyang Gao & Yang Zhang & Wei Sun & Quan Feng & Wanxia Yang & Licheng Wang, 2022. "Optimal Sizing of the Stand-Alone Photovoltaic System for a Solar-Powered Translational Sprinkler Irrigation Machine considering the Loss of Power Supply Probability," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, January.
    5. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    6. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    7. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    8. Adefarati, T. & Bansal, R.C. & Naidoo, R. & Onaolapo, K.A. & Bettayeb, M. & Olulope, P.K. & Sobowale, A.A., 2024. "Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development," Renewable Energy, Elsevier, vol. 227(C).
    9. Fleck, Brian & Huot, Marc, 2009. "Comparative life-cycle assessment of a small wind turbine for residential off-grid use," Renewable Energy, Elsevier, vol. 34(12), pages 2688-2696.
    10. Rangel, N. & Li, H. & Aristidou, P., 2023. "An optimisation tool for minimising fuel consumption, costs and emissions from Diesel-PV-Battery hybrid microgrids," Applied Energy, Elsevier, vol. 335(C).
    11. Graditi, G. & Ferlito, S. & Adinolfi, G., 2016. "Comparison of Photovoltaic plant power production prediction methods using a large measured dataset," Renewable Energy, Elsevier, vol. 90(C), pages 513-519.
    12. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    13. Yeon-Ju Choi & Byeong-Chan Oh & Moses Amoasi Acquah & Dong-Min Kim & Sung-Yul Kim, 2021. "Optimal Operation of a Hybrid Power System as an Island Microgrid in South-Korea," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    14. Altun, Ayse Fidan & Kilic, Muhsin, 2020. "Design and performance evaluation based on economics and environmental impact of a PV-wind-diesel and battery standalone power system for various climates in Turkey," Renewable Energy, Elsevier, vol. 157(C), pages 424-443.
    15. Nirbheram, Joshi Sukhdev & Mahesh, Aeidapu & Bhimaraju, Ambati, 2024. "Techno-economic optimization of standalone photovoltaic-wind turbine-battery energy storage system hybrid energy system considering the degradation of the components," Renewable Energy, Elsevier, vol. 222(C).
    16. Elfatah, Atef A. & Hashim, Fatma A. & Mostafa, Reham R. & El-Sattar, Hoda Abd & Kamel, Salah, 2023. "Energy management of hybrid PV/diesel/battery systems: A modified flow direction algorithm for optimal sizing design — A case study in Luxor, Egypt," Renewable Energy, Elsevier, vol. 218(C).
    17. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    3. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    4. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
    5. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    7. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    8. Ma, Qian & Huang, Xiang & Wang, Feng & Xu, Chao & Babaei, Reza & Ahmadian, Hossein, 2022. "Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers," Energy, Elsevier, vol. 240(C).
    9. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    10. Veldhuis, A.J. & Reinders, A.H.M.E., 2015. "Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 757-769.
    11. Mohtasim, Md. Shahriar & Das, Barun K. & Paul, Utpol K. & Kibria, Md. Golam & Hossain, Md Sanowar, 2025. "Hybrid renewable multi-generation system optimization: Attaining sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    12. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    13. Aman, M.M. & Jasmon, G.B. & Ghufran, A. & Bakar, A.H.A. & Mokhlis, H., 2013. "Investigating possible wind energy potential to meet the power shortage in Karachi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 528-542.
    14. Abdullah, M.A. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "Sustainable energy system design with distributed renewable resources considering economic, environmental and uncertainty aspects," Renewable Energy, Elsevier, vol. 78(C), pages 165-172.
    15. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    16. Duan, Fude & Bu, Xiongzhu, 2024. "Stochastic optimization of a hybrid photovoltaic/fuel cell/parking lot system incorporating cloud model," Renewable Energy, Elsevier, vol. 237(PC).
    17. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    18. Zaroni, Hebert & Maciel, Letícia B. & Carvalho, Diego B. & Pamplona, Edson de O., 2019. "Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system," Energy, Elsevier, vol. 172(C), pages 498-508.
    19. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    20. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.