IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp1017-1033.html
   My bibliography  Save this article

A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage

Author

Listed:
  • Jiménez-Castillo, G.
  • Muñoz-Rodriguez, F.J.
  • Rus-Casas, C.
  • Talavera, D.L.

Abstract

A proper assessment of the cost-competitiveness and profitability of self-consumption systems is crucial to promoting the transition from grid-dependent to energy self-sufficient buildings. Most of the approaches found in the literature may not take into account economic parameters such as taxes, depreciation and the cost of financing, which have a significant effect on the economic profitability of an investment. Moreover, they only focus on discrete array powers and relatively high recording intervals when estimating the self-consumed energy. In order to manage the aforementioned challenges, a new method will be developed to size the PV generator in a PV self-consumption system which provides the NPV curve together with the self-consumption and self-sufficiency indices for a wide range of array powers which suits residential self-consumption systems. Two scenarios will be considered depending on whether the generated surplus electricity is wasted or it is remunerated from the grid operator. Results show that not only the chosen scenario but the electricity tariff may be key parameters when optimizing NPV. Furthermore, the impact of the recording interval may be significant when estimating NPV. Percentage errors of 11.4% and 33.6% may be reached when considering a recording interval of 15 and 60 min, respectively.

Suggested Citation

  • Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1017-1033
    DOI: 10.1016/j.renene.2019.10.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
    2. Ruiz-Arias, J.A. & Terrados, J. & Pérez-Higueras, P. & Pozo-Vázquez, D. & Almonacid, G., 2012. "Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2994-3001.
    3. D. L. Talavera & E. Muñoz-Cerón & J. de la Casa & D. Lozano-Arjona & M. Theristis & P. J. Pérez-Higueras, 2019. "Complete Procedure for the Economic, Financial and Cost-Competitiveness of Photovoltaic Systems with Self-Consumption," Energies, MDPI, vol. 12(3), pages 1-22, January.
    4. Talavera, D.L. & Pérez-Higueras, P. & Almonacid, F. & Fernández, E.F., 2017. "A worldwide assessment of economic feasibility of HCPV power plants: Profitability and competitiveness," Energy, Elsevier, vol. 119(C), pages 408-424.
    5. Almonacid, F. & Rus, C. & Hontoria, L. & Fuentes, M. & Nofuentes, G., 2009. "Characterisation of Si-crystalline PV modules by artificial neural networks," Renewable Energy, Elsevier, vol. 34(4), pages 941-949.
    6. Haegermark, Maria & Kovacs, Peter & Dalenbäck, Jan-Olof, 2017. "Economic feasibility of solar photovoltaic rooftop systems in a complex setting: A Swedish case study," Energy, Elsevier, vol. 127(C), pages 18-29.
    7. Hadjipanayi, M. & Koumparou, I. & Philippou, N. & Paraskeva, V. & Phinikarides, A. & Makrides, G. & Efthymiou, V. & Georghiou, G.E., 2016. "Prospects of photovoltaics in southern European, Mediterranean and Middle East regions," Renewable Energy, Elsevier, vol. 92(C), pages 58-74.
    8. Mirian Jiménez-Torres & Catalina Rus-Casas & Lenin Guillermo Lemus-Zúiga & Leocadio Hontoria, 2017. "The Importance of Accurate Solar Data for Designing Solar Photovoltaic Systems—Case Studies in Spain," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    9. Wright, Andrew & Firth, Steven, 2007. "The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations," Applied Energy, Elsevier, vol. 84(4), pages 389-403, April.
    10. Rahbari, Omid & Vafaeipour, Majid & Omar, Noshin & Rosen, Marc A. & Hegazy, Omar & Timmermans, Jean-Marc & Heibati, Seyedmohammadreza & Bossche, Peter Van Den, 2017. "An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids," Energy, Elsevier, vol. 134(C), pages 1053-1067.
    11. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    12. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    13. Vimpari, Jussi & Junnila, Seppo, 2019. "Estimating the diffusion of rooftop PVs: A real estate economics perspective," Energy, Elsevier, vol. 172(C), pages 1087-1097.
    14. Swift, Kenton D., 2013. "A comparison of the cost and financial returns for solar photovoltaic systems installed by businesses in different locations across the United States," Renewable Energy, Elsevier, vol. 57(C), pages 137-143.
    15. Talavera, D.L. & Muñoz-Cerón, E. & Ferrer-Rodríguez, J.P. & Nofuentes, G., 2016. "Evolution of the cost and economic profitability of grid-connected PV investments in Spain: Long-term review according to the different regulatory frameworks approved," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 233-247.
    16. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    17. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    18. Koumparou, Ioannis & Christoforidis, Georgios C. & Efthymiou, Venizelos & Papagiannis, Grigoris K. & Georghiou, George E., 2017. "Configuring residential PV net-metering policies – A focus on the Mediterranean region," Renewable Energy, Elsevier, vol. 113(C), pages 795-812.
    19. Bendato, Ilaria & Bonfiglio, Andrea & Brignone, Massimo & Delfino, Federico & Pampararo, Fabio & Procopio, Renato & Rossi, Mansueto, 2018. "Design criteria for the optimal sizing of integrated photovoltaic-storage systems," Energy, Elsevier, vol. 149(C), pages 505-515.
    20. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
    21. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    22. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gergely, László Zsolt & Csoknyai, Tamás & Horváth, Miklós, 2022. "Novel load matching indicators for photovoltaic system sizing and evaluation," Applied Energy, Elsevier, vol. 327(C).
    2. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "Solar collective self-consumption: Economic analysis of a policy mix," Ecological Economics, Elsevier, vol. 199(C).
    3. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    4. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.
    5. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernandez, Eduardo F., 2020. "Photovoltaic Cleaning Frequency Optimization Under Different Degradation Rate Patterns," MPRA Paper 105008, University Library of Munich, Germany, revised 07 Oct 2020.
    6. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernández, Eduardo F., 2020. "Photovoltaic cleaning frequency optimization under different degradation rate patterns," Renewable Energy, Elsevier, vol. 166(C), pages 136-146.
    7. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    8. Juha Koskela & Antti Mutanen & Pertti Järventausta, 2020. "Using Load Forecasting to Control Domestic Battery Energy Storage Systems," Energies, MDPI, vol. 13(15), pages 1-20, August.
    9. Mircea Stefan Simoiu & Ioana Fagarasan & Stephane Ploix & Vasile Calofir, 2021. "Sizing and Management of an Energy System for a Metropolitan Station with Storage and Related District Energy Community," Energies, MDPI, vol. 14(18), pages 1-22, September.
    10. Natalia Iwaszczuk & Mariusz Trela, 2021. "Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland," Energies, MDPI, vol. 14(6), pages 1-15, March.
    11. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
    12. Jiménez-Castillo, G. & Rus-Casas, C. & Tina, G.M. & Muñoz-Rodriguez, F.J., 2021. "Effects of smart meter time resolution when analyzing photovoltaic self-consumption system on a daily and annual basis," Renewable Energy, Elsevier, vol. 164(C), pages 889-896.
    13. Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
    2. D. L. Talavera & E. Muñoz-Cerón & J. de la Casa & D. Lozano-Arjona & M. Theristis & P. J. Pérez-Higueras, 2019. "Complete Procedure for the Economic, Financial and Cost-Competitiveness of Photovoltaic Systems with Self-Consumption," Energies, MDPI, vol. 12(3), pages 1-22, January.
    3. Gomez-Gonzalez, M. & Hernandez, J.C. & Vera, D. & Jurado, F., 2020. "Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve," Energy, Elsevier, vol. 191(C).
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    6. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.
    7. Jiménez-Castillo, G. & Rus-Casas, C. & Tina, G.M. & Muñoz-Rodriguez, F.J., 2021. "Effects of smart meter time resolution when analyzing photovoltaic self-consumption system on a daily and annual basis," Renewable Energy, Elsevier, vol. 164(C), pages 889-896.
    8. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    9. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    10. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    11. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    12. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    13. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    14. Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.
    15. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    16. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    17. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    18. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
    19. Ángel José Ordóñez Mendieta & Esteban Sánchez Hernández, 2021. "Analysis of PV Self-Consumption in Educational and Office Buildings in Spain," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    20. Olivella, Jordi & Domenech, Bruno & Calleja, Gema, 2021. "Potential of implementation of residential photovoltaics at city level: The case of London," Renewable Energy, Elsevier, vol. 180(C), pages 577-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1017-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.