IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013800.html
   My bibliography  Save this article

Novel load matching indicators for photovoltaic system sizing and evaluation

Author

Listed:
  • Gergely, László Zsolt
  • Csoknyai, Tamás
  • Horváth, Miklós

Abstract

Integration of renewable energy sources in energy systems is crucial in achieving climate goals. Transformation of the power system – decentralization and prosumerism has led to the spread of domestic power plants taking part in the process. Mismatch problem of these predominantly grid-connected systems are typically described with load matching indicators. Most commonly used self-consumption and self-sufficiency metrics, though come with limits. One of the greatest is that they are monotone as the function of the capacity of photovoltaics implemented, making them uncapable of suggesting a technical optimum for system size. The scope of this study is to introduce two novel indicators with technical optima those can serve as a sizing principle for domestic photovoltaic plants for different approaches. First, self-production metric is introduced which allocates photovoltaic capacity that delivers maximum renewable utilization on-site and second, grid-liability reveals an optimum from the perspective of minimizing grid usage.

Suggested Citation

  • Gergely, László Zsolt & Csoknyai, Tamás & Horváth, Miklós, 2022. "Novel load matching indicators for photovoltaic system sizing and evaluation," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013800
    DOI: 10.1016/j.apenergy.2022.120123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinz, Andreas & Rieberer, René, 2021. "Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system," Applied Energy, Elsevier, vol. 293(C).
    2. Xiao, Biao & He, Lin & Zhang, Shihang & Kong, Tingting & Hu, Bin & Wang, R.Z., 2020. "Comparison and analysis on air-to-air and air-to-water heat pump heating systems," Renewable Energy, Elsevier, vol. 146(C), pages 1888-1896.
    3. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    4. Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
    5. Tom Simko & Mark B. Luther & Hong Xian Li & Peter Horan, 2021. "Applying Solar PV to Heat Pump and Storage Technologies in Australian Houses," Energies, MDPI, vol. 14(17), pages 1-18, September.
    6. Maria A. Kyritsi & Varvara A. Mouchtouri & Antonis Katsioulis & Elina Kostara & Vasileios Nakoulas & Marina Hatzinikou & Christos Hadjichristodoulou, 2018. "Legionella Colonization of Hotel Water Systems in Touristic Places of Greece: Association with System Characteristics and Physicochemical Parameters," IJERPH, MDPI, vol. 15(12), pages 1-12, November.
    7. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    8. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    9. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    10. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    11. Pinamonti, Maria & Baggio, Paolo, 2020. "Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings," Renewable Energy, Elsevier, vol. 157(C), pages 90-99.
    12. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    13. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    2. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    4. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    5. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.
    6. Nicola Franzoi & Alessandro Prada & Sara Verones & Paolo Baggio, 2021. "Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates," Energies, MDPI, vol. 14(14), pages 1-17, July.
    7. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    8. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    9. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    10. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    11. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    12. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    13. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2022. "Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities," Renewable Energy, Elsevier, vol. 198(C), pages 1383-1397.
    14. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    15. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    16. Klein, Konstantin & Langner, Robert & Kalz, Doreen & Herkel, Sebastian & Henning, Hans-Martin, 2016. "Grid support coefficients for electricity-based heating and cooling and field data analysis of present-day installations in Germany," Applied Energy, Elsevier, vol. 162(C), pages 853-867.
    17. Heinz, Andreas & Rieberer, René, 2021. "Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system," Applied Energy, Elsevier, vol. 293(C).
    18. Sebastian Pater, 2023. "Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland," Energies, MDPI, vol. 16(10), pages 1-14, May.
    19. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    20. Elisa Marrasso & Carlo Roselli & Francesco Tariello, 2020. "Comparison of Two Solar PV-Driven Air Conditioning Systems with Different Tracking Modes," Energies, MDPI, vol. 13(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.