IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v293y2021ics030626192100430x.html
   My bibliography  Save this article

Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system

Author

Listed:
  • Heinz, Andreas
  • Rieberer, René

Abstract

Air-to-water heat pumps are attractive as a replacement of inefficient fossil fuel-based heating systems in thermally renovated buildings. If existing radiator heating systems are not replaced during renovation, high flow temperatures limit the efficiency of the heat pump. For such systems we analysed the possibility to reduce grid electricity consumption by combining the heat pump with a photovoltaic system, a thermal storage (water tank) and an intelligent rule-based control system that enables targeted heat pump operation with on-site PV electricity. Detailed TRNSYS simulations were carried out for space heating and domestic hot water preparation in a single-family house in Zurich in two renovation scenarios. Different strategies for improved control were analysed and combined to an integrated control approach. To perform an economic analysis, the payback time of the PV system was analysed for different PV and storage sizes. Assuming typical Austrian electricity prizes and feed-in tariffs, the shortest payback time of 17.1 years can be achieved with 5kWp of PV, combined with a storage volume of 1 m3. If operated with this optimum size and the advanced control, the system saves 2400 kWh/a (a reduction of –29%) of grid electricity, and the net cost of electricity is lowered by 585€/a (–35%) as compared to the same system without PV. A sensitivity analysis was performed to consider the situation in different countries, using different electricity prizes and feed-in tariffs. The results show how these influence the payback time and the optimum size of the PV system.

Suggested Citation

  • Heinz, Andreas & Rieberer, René, 2021. "Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system," Applied Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:appene:v:293:y:2021:i:c:s030626192100430x
    DOI: 10.1016/j.apenergy.2021.116953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100430X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thygesen, Richard & Karlsson, Björn, 2016. "Simulation of a proposed novel weather forecast control for ground source heat pumps as a mean to evaluate the feasibility of forecast controls’ influence on the photovoltaic electricity self-consumpt," Applied Energy, Elsevier, vol. 164(C), pages 579-589.
    2. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    3. Psimopoulos, Emmanouil & Bee, Elena & Widén, Joakim & Bales, Chris, 2019. "Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system," Applied Energy, Elsevier, vol. 249(C), pages 355-367.
    4. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
    2. Gergely, László Zsolt & Csoknyai, Tamás & Horváth, Miklós, 2022. "Novel load matching indicators for photovoltaic system sizing and evaluation," Applied Energy, Elsevier, vol. 327(C).
    3. Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).
    4. Haolan Liao & Rong Ren & Lu Li, 2023. "Existing Building Renovation: A Review of Barriers to Economic and Environmental Benefits," IJERPH, MDPI, vol. 20(5), pages 1-23, February.
    5. Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
    6. Lämmle, Manuel & Bongs, Constanze & Wapler, Jeannette & Günther, Danny & Hess, Stefan & Kropp, Michael & Herkel, Sebastian, 2022. "Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures to reduce space heating temperatures in existing buildings," Energy, Elsevier, vol. 242(C).
    7. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    8. Barnaś, Krzysztof & Jeleński, Tomasz & Nowak-Ocłoń, Marzena & Racoń-Leja, Kinga & Radziszewska-Zielina, Elżbieta & Szewczyk, Bartłomiej & Śladowski, Grzegorz & Toś, Cezary & Varbanov, Petar Sabev, 2023. "Algorithm for the comprehensive thermal retrofit of housing stock aided by renewable energy supply: A sustainable case for Krakow," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    2. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    3. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    4. Emmanouil Psimopoulos & Fatemeh Johari & Chris Bales & Joakim Widén, 2020. "Impact of Boundary Conditions on the Performance Enhancement of Advanced Control Strategies for a Residential Building with a Heat Pump and PV System with Energy Storage," Energies, MDPI, vol. 13(6), pages 1-25, March.
    5. Sebastian Pater, 2023. "Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland," Energies, MDPI, vol. 16(10), pages 1-14, May.
    6. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    7. Knuutinen, Jere & Böök, Herman & Ruuskanen, Vesa & Kosonen, Antti & Immonen, Paula & Ahola, Jero, 2021. "Ground source heat pump control methods for solar photovoltaic-assisted domestic hot water heating," Renewable Energy, Elsevier, vol. 177(C), pages 732-742.
    8. Margherita Povolato & Alessandro Prada & Sara Verones & Paolo Baggio, 2022. "On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location," Energies, MDPI, vol. 16(1), pages 1-13, December.
    9. Nicola Franzoi & Alessandro Prada & Sara Verones & Paolo Baggio, 2021. "Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates," Energies, MDPI, vol. 14(14), pages 1-17, July.
    10. Gergely, László Zsolt & Csoknyai, Tamás & Horváth, Miklós, 2022. "Novel load matching indicators for photovoltaic system sizing and evaluation," Applied Energy, Elsevier, vol. 327(C).
    11. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    12. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    13. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    14. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    15. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    16. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    17. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    18. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    19. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    20. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:293:y:2021:i:c:s030626192100430x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.