IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1153-d328052.html
   My bibliography  Save this article

Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles

Author

Listed:
  • Reza Fachrizal

    (Built Environment Energy Systems Group (BEESG), Division of Civil Engineering and Built Environment, Department of Civil and Industrial Engineering, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden)

  • Joakim Munkhammar

    (Built Environment Energy Systems Group (BEESG), Division of Civil Engineering and Built Environment, Department of Civil and Industrial Engineering, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden)

Abstract

The integration of photovoltaic (PV) and electric vehicle (EV) charging in residential buildings has increased in recent years. At high latitudes, both pose new challenges to the residential power systems due to the negative correlation between household load and PV power production and the increase in household peak load by EV charging. EV smart charging schemes can be an option to overcome these challenges. This paper presents a distributed and a centralized EV smart charging scheme for residential buildings based on installed photovoltaic (PV) power output and household electricity consumption. The proposed smart charging schemes are designed to determine the optimal EV charging schedules with the objective to minimize the net load variability or to flatten the net load profile. Minimizing the net load variability implies both increasing the PV self-consumption and reducing the peak loads. The charging scheduling problems are formulated and solved with quadratic programming approaches. The departure and arrival time and the distance covered by vehicles in each trip are specifically modeled based on available statistical data from the Swedish travel survey. The schemes are applied on simulated typical Swedish detached houses without electric heating. Results show that both improved PV self-consumption and peak load reduction are achieved. The aggregation of distributed smart charging in multiple households is conducted, and the results are compared to the smart charging for a single household. On the community level, both results from distributed and centralized charging approaches are compared.

Suggested Citation

  • Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1153-:d:328052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Matthias D. Galus & Marina González Vayá & Thilo Krause & Göran Andersson, 2013. "The role of electric vehicles in smart grids," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(4), pages 384-400, July.
    3. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    4. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    5. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    6. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    7. Finn, P. & Fitzpatrick, C. & Connolly, D., 2012. "Demand side management of electric car charging: Benefits for consumer and grid," Energy, Elsevier, vol. 42(1), pages 358-363.
    8. Stefano Rinaldi & Marco Pasetti & Emiliano Sisinni & Federico Bonafini & Paolo Ferrari & Mattia Rizzi & Alessandra Flammini, 2018. "On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles," Energies, MDPI, vol. 11(5), pages 1-27, May.
    9. Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
    10. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    11. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    12. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    13. Pasaoglu, G. & Fiorello, D. & Martino, A. & Zani, L. & Zubaryeva, A. & Thiel, C., 2014. "Travel patterns and the potential use of electric cars – Results from a direct survey in six European countries," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 51-59.
    14. Vanhoudt, D. & Geysen, D. & Claessens, B. & Leemans, F. & Jespers, L. & Van Bael, J., 2014. "An actively controlled residential heat pump: Potential on peak shaving and maximization of self-consumption of renewable energy," Renewable Energy, Elsevier, vol. 63(C), pages 531-543.
    15. Martino Tran & David Banister & Justin D. K. Bishop & Malcolm D. McCulloch, 2012. "Realizing the electric-vehicle revolution," Nature Climate Change, Nature, vol. 2(5), pages 328-333, May.
    16. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.
    2. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    3. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    4. Modawy Adam Ali Abdalla & Wang Min & Omer Abbaker Ahmed Mohammed, 2020. "Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile," Energies, MDPI, vol. 13(23), pages 1-18, December.
    5. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    6. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    7. Eva Llera-Sastresa & José Ángel Gimeno & José Luis Osorio-Tejada & Pilar Portillo-Tarragona, 2023. "Effect of Sharing Schemes on the Collective Energy Self-Consumption Feasibility," Energies, MDPI, vol. 16(18), pages 1-17, September.
    8. Connor Scott & Mominul Ahsan & Alhussein Albarbar, 2021. "Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    9. Mattia Dallapiccola & Grazia Barchi & Jennifer Adami & David Moser, 2021. "The Role of Flexibility in Photovoltaic and Battery Optimal Sizing towards a Decarbonized Residential Sector," Energies, MDPI, vol. 14(8), pages 1-18, April.
    10. Alfredo Nespoli & Andrea Matteri & Silvia Pretto & Luca De Ciechi & Emanuele Ogliari, 2021. "Battery Sizing for Different Loads and RES Production Scenarios through Unsupervised Clustering Methods," Forecasting, MDPI, vol. 3(4), pages 1-19, September.
    11. Sebastian Pater, 2023. "Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland," Energies, MDPI, vol. 16(10), pages 1-14, May.
    12. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    13. Giuseppe Barone & Giovanni Brusco & Daniele Menniti & Anna Pinnarelli & Gaetano Polizzi & Nicola Sorrentino & Pasquale Vizza & Alessandro Burgio, 2020. "How Smart Metering and Smart Charging may Help a Local Energy Community in Collective Self-Consumption in Presence of Electric Vehicles," Energies, MDPI, vol. 13(16), pages 1-18, August.
    14. Doğukan Aycı & Ferhat Öğüt & Ulaş Özen & Bora Batuhan İşgör & Sinan Küfeoğlu, 2021. "Energy Optimisation Models for Self-Sufficiency of a Typical Turkish Residential Electricity Customer of the Future," Energies, MDPI, vol. 14(19), pages 1-24, September.
    15. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    2. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    6. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    7. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    8. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    9. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    10. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    11. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    12. Fretzen, Ulrich & Ansarin, Mohammad & Brandt, Tobias, 2021. "Temporal city-scale matching of solar photovoltaic generation and electric vehicle charging," Applied Energy, Elsevier, vol. 282(PA).
    13. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    14. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    15. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    16. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    17. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    18. Thygesen, Richard & Karlsson, Björn, 2016. "Simulation of a proposed novel weather forecast control for ground source heat pumps as a mean to evaluate the feasibility of forecast controls’ influence on the photovoltaic electricity self-consumpt," Applied Energy, Elsevier, vol. 164(C), pages 579-589.
    19. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1153-:d:328052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.