IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304955.html
   My bibliography  Save this article

A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered

Author

Listed:
  • Huang, Pei
  • Lovati, Marco
  • Zhang, Xingxing
  • Bales, Chris

Abstract

Distributed renewable energy systems are now widely installed in many buildings, transforming the buildings into ‘electricity prosumers’. Existing studies have developed some advanced building side controls that enable renewable energy sharing and that aim to optimize building-cluster-level performance via regulating the energy storage charging/discharging. However, the flexible demand shifting ability of electric vehicles is not considered in these building side controls. For instance, the electric vehicle charging will usually start once they are plugged into charging stations. But, in such charging period the renewable generation may be insufficient to cover the EV charging load, leading to grid electricity imports. Consequently, the building-cluster-level performance is not optimized. Therefore, this study proposes a coordinated control of building prosumers for improving the cluster-level performance, by making use of energy sharing and storage capability of electricity batteries in both buildings and EVs. An EV charging/discharging model is first developed. Then, based on the predicted future 24 h electricity demand and renewable generation data, the coordinated control first considers the whole building cluster as one ‘integrated’ building and optimizes its operation as well as the EV charging/discharging using genetic algorithm. Next, the operation of individual buildings in the future 24 h is coordinated using nonlinear programming. For validation, the developed control has been tested on a real building cluster in Ludvika, Sweden. The study results show that the developed control can increase the cluster-level daily renewable self-consumption rate by 19% and meanwhile reduce the daily electricity bills by 36% compared with the conventional controls.

Suggested Citation

  • Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304955
    DOI: 10.1016/j.apenergy.2020.114983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    2. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris & Hallbeck, Sven & Becker, Anders & Bergqvist, Henrik & Hedberg, Jan & Maturi, Laura, 2019. "Transforming a residential building cluster into electricity prosumers in Sweden: Optimal design of a coupled PV-heat pump-thermal storage-electric vehicle system," Applied Energy, Elsevier, vol. 255(C).
    3. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    4. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    5. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    6. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    7. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    8. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    9. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    10. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    11. Xylia, Maria & Silveira, Semida, 2017. "On the road to fossil-free public transport: The case of Swedish bus fleets," Energy Policy, Elsevier, vol. 100(C), pages 397-412.
    12. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    13. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    14. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    15. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    16. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    17. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    18. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    19. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sheng & Liu, Jun & Wang, Fenghao & Chai, Jiale, 2023. "Design optimization of medium-deep borehole heat exchanger for building heating under climate change," Energy, Elsevier, vol. 282(C).
    2. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    3. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    4. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    5. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    6. Modawy Adam Ali Abdalla & Wang Min & Gehad Abdullah Amran & Amerah Alabrah & Omer Abbaker Ahmed Mohammed & Hussain AlSalman & Bassiouny Saleh, 2023. "Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with Vehicle-to-Home and Energy Storage System," Sustainability, MDPI, vol. 15(20), pages 1-28, October.
    7. Zezhong Li & Xiangang Peng & Yilin Xu & Fucheng Zhong & Sheng Ouyang & Kaiguo Xuan, 2023. "A Stackelberg Game-Based Model of Distribution Network-Distributed Energy Storage Systems Considering Demand Response," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    8. Long Zeng & Si-Zhe Chen & Zebin Tang & Ling Tian & Tingting Xiong, 2023. "An Electric Vehicle Charging Method Considering Multiple Power Exchange Modes’ Coordination," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    9. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    10. Gao, Hongjun & Cai, Wenhui & He, Shuaijia & Jiang, Jun & Liu, Junyong, 2023. "Multi-energy sharing optimization for a building cluster towards net-zero energy system," Applied Energy, Elsevier, vol. 350(C).
    11. Svetozarevic, B. & Baumann, C. & Muntwiler, S. & Di Natale, L. & Zeilinger, M.N. & Heer, P., 2022. "Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: Simulations and experiments," Applied Energy, Elsevier, vol. 307(C).
    12. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    13. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    14. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Lin, Chun-Cheng & Wu, Yi-Fang & Liu, Wan-Yu, 2021. "Optimal sharing energy of a complex of houses through energy trading in the Internet of energy," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    2. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    3. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    4. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    5. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    6. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    7. May, Ross & Huang, Pei, 2023. "A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets," Applied Energy, Elsevier, vol. 334(C).
    8. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    9. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    10. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    11. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    12. Gao, Dian-ce & Sun, Yongjun & Zhang, Xingxing & Huang, Pei & Yelin Zhang,, 2022. "A GA-based NZEB-cluster planning and design optimization method for mitigating grid overvoltage risk," Energy, Elsevier, vol. 243(C).
    13. Zhang, Yelin & Zhang, Xingxing & Huang, Pei & Sun, Yongjun, 2020. "Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization," Applied Energy, Elsevier, vol. 279(C).
    14. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    15. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    16. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    17. Gokula Manikandan Senthil Kumar & Sunliang Cao, 2021. "State-of-the-Art Review of Positive Energy Building and Community Systems," Energies, MDPI, vol. 14(16), pages 1-54, August.
    18. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    19. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    20. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.