IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001060.html
   My bibliography  Save this article

Characterizing effective building clusters: An extensive study on diverse cluster composition, distributed energy resource utilization, and energy performance

Author

Listed:
  • Kaminski, Gregory
  • Odonkor, Philip

Abstract

Distributed energy resources (DERs) hold immense potential for urban sustainability and resilience. However, effectively integrating DERs across diverse building types remains a challenge. The concept of “building clusters,” groups of buildings with shared energy generation and storage resources, has emerged as a promising way to better utilize these DERs. Using validated synthetic building load data and multi-dimensional performance metrics, this study investigates the impact of building cluster composition on energy performance, advocating for a shift from conventional homogeneous cluster design. We analyze a vast dataset of over 15,000 unique five-building clusters, encompassing 16 distinct building types, each equipped with solar PV and storage. Using a multi-metric ranking system, we evaluate and rank cluster energy performance based on grid independence, energy cost reduction, and DER utilization efficiency. Our findings reveal that building type diversity significantly enhances cluster performance, outweighing traditionally emphasized factors such as total building area. High-performing clusters exhibit complementary load profiles across daily and seasonal timescales, enabling more efficient utilization of shared DER resources. Notably, strategic combinations of buildings with contrasting operational patterns (e.g., schools and office buildings) demonstrate superior year-round performance and grid independence. This study offers vital insights for urban planners and energy designers, highlighting the importance of prioritizing strategic diversity in building clusters over traditional homogeneity to maximize the potential of DERs. Its insights can provide an empirical foundation for zoning policies and incentives that promote mixed-use communities, which naturally support high-performing DER-integrated clusters. While focused on New York, the findings provide a foundation for broader applications in urban energy systems.

Suggested Citation

  • Kaminski, Gregory & Odonkor, Philip, 2025. "Characterizing effective building clusters: An extensive study on diverse cluster composition, distributed energy resource utilization, and energy performance," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001060
    DOI: 10.1016/j.apenergy.2025.125376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    2. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    3. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    4. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.
    5. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    6. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    7. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    8. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
    9. Guray Kara & Asgeir Tomasgard & Hossein Farahmand, 2021. "Characterization of flexible electricity in power and energy markets," Papers 2109.03000, arXiv.org.
    10. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    11. Osman, Mohamed & Saad, Mostafa M. & Ouf, Mohamed & Eicker, Ursula, 2024. "From buildings to cities: How household demographics shape demand response and energy consumption," Applied Energy, Elsevier, vol. 356(C).
    12. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    14. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    15. Hachem-Vermette, Caroline & Singh, Kuljeet, 2022. "Optimization of energy resources in various building cluster archetypes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Wang, Andong & Li, Rongling & You, Shi, 2018. "Development of a data driven approach to explore the energy flexibility potential of building clusters," Applied Energy, Elsevier, vol. 232(C), pages 89-100.
    17. Jafari-Marandi, Ruholla & Hu, Mengqi & Omitaomu, OluFemi A., 2016. "A distributed decision framework for building clusters with different heterogeneity settings," Applied Energy, Elsevier, vol. 165(C), pages 393-404.
    18. Botelho, D.F. & Dias, B.H. & de Oliveira, L.W. & Soares, T.A. & Rezende, I. & Sousa, T., 2021. "Innovative business models as drivers for prosumers integration - Enablers and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    2. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    3. Chen, Yang & Hu, Mengqi, 2016. "Balancing collective and individual interests in transactive energy management of interconnected micro-grid clusters," Energy, Elsevier, vol. 109(C), pages 1075-1085.
    4. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    5. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    6. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    8. Maitanova, Nailya & Schlüters, Sunke & Hanke, Benedikt & von Maydell, Karsten, 2024. "An analytical method for quantifying the flexibility potential of decentralised energy systems," Applied Energy, Elsevier, vol. 364(C).
    9. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2018. "The prosumers and the grid," Journal of Regulatory Economics, Springer, vol. 53(1), pages 100-126, February.
    10. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    11. Clastres, Cédric & Percebois, Jacques & Rebenaque, Olivier & Solier, Boris, 2019. "Cross subsidies across electricity network users from renewable self-consumption," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    12. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    13. Alaa A. F. Husain & Maryam Huda Ahmad Phesal & Mohd Zainal Abidin Ab Kadir & Ungku Anisa Ungku Amirulddin & Abdulhadi H. J. Junaidi, 2021. "A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    14. Heymann, Fabian & Miranda, Vladimiro & Soares, Filipe Joel & Duenas, Pablo & Perez Arriaga, Ignacio & Prata, Ricardo, 2019. "Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal," Applied Energy, Elsevier, vol. 256(C).
    15. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    16. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    17. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    18. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    19. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.
    20. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.