IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032121013125.html
   My bibliography  Save this article

Optimization of energy resources in various building cluster archetypes

Author

Listed:
  • Hachem-Vermette, Caroline
  • Singh, Kuljeet

Abstract

The current work presents the development of building cluster archetypes, and the optimization of their energy resources mix. Twelve archetypes of building clusters are developed to reflect current North American practices. These archetypes range from low-density, all residential clusters, to high-density mixed-use clusters. A methodology is developed to explore near-optimal mixtures of renewable and alternative energy resources and their interaction with the existing energy grid. The methodology as well includes a sub-routine that examines energy sharing potential among clusters. The application of the optimization methodology to the selected archetypes shows that the optimal mix of energy sources varies according to the type of the cluster and its density. For instance, while roof-integrated PV panels can supply all the energy needs of low-density residential clusters, backup energy sources are required for higher density residential clusters to fulfill the thermal loads. The electrical energy demand of high-density mixed-use clusters can be met by involving alternative sources of energy, such as waste to energy. In the mixed-use case presented in this study, the waste required to satisfy the total electric load is as high as 10:1 as compared to the waste disposal. Sharing of energy resources among various clusters allows reducing the waste needed by about 37%.

Suggested Citation

  • Hachem-Vermette, Caroline & Singh, Kuljeet, 2022. "Optimization of energy resources in various building cluster archetypes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013125
    DOI: 10.1016/j.rser.2021.112050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121013125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Kuljeet & Hachem-Vermette, Caroline, 2021. "Economical energy resource planning to promote sustainable urban design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Belmili, Hocine & Haddadi, Mourad & Bacha, Seddik & Almi, Mohamed Fayçal & Bendib, Boualem, 2014. "Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic analysis and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 821-832.
    3. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
    4. Hachem-Vermette, Caroline & Singh, Kuljeet, 2020. "Developing an optimization methodology for urban energy resources mix," Applied Energy, Elsevier, vol. 269(C).
    5. Singh, Kuljeet & Hachem-Vermette, Caroline, 2019. "Influence of mixed-use neighborhood developments on the performance of waste-to-energy CHP plant," Energy, Elsevier, vol. 189(C).
    6. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Samuelsen, Scott, 2012. "Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing," Energy, Elsevier, vol. 42(1), pages 546-562.
    7. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    8. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    9. Wang, Luhao & Zhang, Bingying & Li, Qiqiang & Song, Wen & Li, Guanguan, 2019. "Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty," Applied Energy, Elsevier, vol. 255(C).
    10. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    11. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    12. Fonseca, Jimeno A. & Schlueter, Arno, 2015. "Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts," Applied Energy, Elsevier, vol. 142(C), pages 247-265.
    13. Walker, Shalika & Labeodan, Timilehin & Boxem, Gert & Maassen, Wim & Zeiler, Wim, 2018. "An assessment methodology of sustainable energy transition scenarios for realizing energy neutral neighborhoods," Applied Energy, Elsevier, vol. 228(C), pages 2346-2360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ifrah Tahir & Ali Nasir & Abdullah Algethami, 2022. "Optimal Control Policy for Energy Management of a Commercial Bank," Energies, MDPI, vol. 15(6), pages 1-19, March.
    2. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Kuljeet Singh & Caroline Hachem-Vermette, 2022. "Techniques of Improving Infrastructure and Energy Resilience in Urban Setting," Energies, MDPI, vol. 15(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Kuljeet & Hachem-Vermette, Caroline, 2021. "Economical energy resource planning to promote sustainable urban design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Hachem-Vermette, Caroline & Singh, Kuljeet, 2020. "Developing an optimization methodology for urban energy resources mix," Applied Energy, Elsevier, vol. 269(C).
    3. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Caroline Hachem-Vermette & Kuljeet Singh, 2022. "Energy Systems and Energy Sharing in Traditional and Sustainable Archetypes of Urban Developments," Sustainability, MDPI, vol. 14(3), pages 1-22, January.
    5. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Pickering, B. & Choudhary, R., 2019. "District energy system optimisation under uncertain demand: Handling data-driven stochastic profiles," Applied Energy, Elsevier, vol. 236(C), pages 1138-1157.
    7. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    9. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    10. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    11. Tiziano Dalla Mora & Lorenzo Teso & Laura Carnieletto & Angelo Zarrella & Piercarlo Romagnoni, 2021. "Comparative Analysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing District in Venice," Energies, MDPI, vol. 14(16), pages 1-22, August.
    12. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    13. van der Heijde, Bram & Vandermeulen, Annelies & Salenbien, Robbe & Helsen, Lieve, 2019. "Representative days selection for district energy system optimisation: a solar district heating system with seasonal storage," Applied Energy, Elsevier, vol. 248(C), pages 79-94.
    14. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    15. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    16. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
    17. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    18. Alberto Fichera & Mattia Frasca & Rosaria Volpe, 2020. "A cost-based approach for evaluating the impact of a network of distributed energy systems on the centralized energy supply," Energy & Environment, , vol. 31(1), pages 77-87, February.
    19. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    20. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.