IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318675.html
   My bibliography  Save this article

Influence of mixed-use neighborhood developments on the performance of waste-to-energy CHP plant

Author

Listed:
  • Singh, Kuljeet
  • Hachem-Vermette, Caroline

Abstract

In this work, the influence of residential and commercial buildings on the performance of waste-to-energy (WtE) combined heat and power (CHP) plant, within a mixed-use neighborhood is quantified. The waste incinerator-based single and double stage CHP plants considered in study are modeled and simulated in Matlab-Simulink. The performance of WtE-CHP plant is evaluated based on hourly electricity and heat generations, heat extraction temperatures, and GHG emissions. The key results indicate that the use of single or double stage CHP plant is decided by various types commercial buildings, commercial land fraction, and commercial land to total area ratio. Considering a commercial land to total land area fraction of 0.25, two stage WtE-CHP plant can be used irrespective to varying proportions of residential buildings types and their unit densities. The heat extraction temperatures of 100–112 °C can be yielded for two stage CHP, whereas, for single stage CHP it lies between 170 and 180 °C. The GHG emissions for WtE-CHP plants decreases with the increase in proportions of offices, single detached houses, and townhouses. However, it increases with the increase fraction of retails and apartments. The energy generation to consumption fraction lies between 17 and 57% for conventional neighborhoods, whereas, for the high-performance neighborhoods it varies between 22 and 65%.

Suggested Citation

  • Singh, Kuljeet & Hachem-Vermette, Caroline, 2019. "Influence of mixed-use neighborhood developments on the performance of waste-to-energy CHP plant," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318675
    DOI: 10.1016/j.energy.2019.116172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hachem-Vermette, Caroline & Grewal, Kuljeet Singh, 2019. "Investigation of the impact of residential mixture on energy and environmental performance of mixed use neighborhoods," Applied Energy, Elsevier, vol. 241(C), pages 362-379.
    2. Zsigraiová, Zdena & Tavares, Gilberto & Semiao, Viriato & Carvalho, Maria de Graça, 2009. "Integrated waste-to-energy conversion and waste transportation within island communities," Energy, Elsevier, vol. 34(5), pages 623-635.
    3. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    4. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    5. Korobitsyn, M.A & Jellema, P & Hirs, G.G, 1999. "Possibilities for gas turbine and waste incinerator integration," Energy, Elsevier, vol. 24(9), pages 783-793.
    6. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    2. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    3. Johan De Greef & Quynh N. Hoang & Raf Vandevelde & Wouter Meynendonckx & Zouhir Bouchaar & Giuseppe Granata & Mathias Verbeke & Mariya Ishteva & Tine Seljak & Jo Van Caneghem & Maarten Vanierschot, 2023. "Towards Waste-to-Energy-and-Materials Processes with Advanced Thermochemical Combustion Intelligence in the Circular Economy," Energies, MDPI, vol. 16(4), pages 1-19, February.
    4. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    5. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    6. Hachem-Vermette, Caroline & Singh, Kuljeet, 2022. "Optimization of energy resources in various building cluster archetypes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    8. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eryganov, Ivan & Šomplák, Radovan & Nevrlý, Vlastimír & Osicka, Ondrej & Procházka, Vít, 2022. "Cost-effective municipal unions formation within intermediate regions under prioritized waste energy recovery," Energy, Elsevier, vol. 256(C).
    2. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    3. Olusola Joshua Olujobi & Daniel E. Ufua & Uchechukwu Emena Okorie & Mercy E. Ogbari, 2022. "Carbon emission, solid waste management, and electricity generation: a legal and empirical perspective for renewable energy in Nigeria," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(3), pages 599-619, September.
    4. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Pirotta, F.J.C. & Ferreira, E.C. & Bernardo, C.A., 2013. "Energy recovery and impact on land use of Maltese municipal solid waste incineration," Energy, Elsevier, vol. 49(C), pages 1-11.
    7. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    9. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    10. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," MPRA Paper 105959, University Library of Munich, Germany.
    11. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    12. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    13. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    14. Ghalehkhondabi, Iman & Maihami, Reza & Ahmadi, Ehsan, 2020. "Optimal pricing and environmental improvement for a hazardous waste disposal supply chain with emission penalties," Utilities Policy, Elsevier, vol. 62(C).
    15. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    16. Botakoz Suleimenova & Berik Aimbetov & Daulet Zhakupov & Dhawal Shah & Yerbol Sarbassov, 2022. "Co-Firing of Refuse-Derived Fuel with Ekibastuz Coal in a Bubbling Fluidized Bed Reactor: Analysis of Emissions and Ash Characteristics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    17. Arezoo Ghazanfari, 2023. "An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets," Energies, MDPI, vol. 16(4), pages 1-24, February.
    18. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    19. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    20. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.