IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5164-d618706.html
   My bibliography  Save this article

Comparative Analysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing District in Venice

Author

Listed:
  • Tiziano Dalla Mora

    (Department of Architecture and Arts, University IUAV of Venice, Dorsoduro 2206, 30123 Venezia, Italy)

  • Lorenzo Teso

    (Department of Architecture and Arts, University IUAV of Venice, Dorsoduro 2206, 30123 Venezia, Italy)

  • Laura Carnieletto

    (Department of Industrial Engineering—Applied Physics Section, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Angelo Zarrella

    (Department of Industrial Engineering—Applied Physics Section, University of Padova, Via Venezia 1, 35131 Padova, Italy)

  • Piercarlo Romagnoni

    (Department of Architecture and Arts, University IUAV of Venice, Dorsoduro 2206, 30123 Venezia, Italy)

Abstract

The residential building stock represents one of the major players in energy use and greenhouse gas emissions; thus, it is fundamental to reduce the energy used. Simulation tools are becoming more and more accurate in compliance with the new requirements both at the single-building and at the district scale, although they are not affordable by non-specialist users such as policymakers. The research concerns the evaluation of the energy demand for space heating for a historical district that is representative of the Italian building stock. The work compares dynamic and specialist-oriented urban scale tools such as Energy Urban Resistance Capacitance Approach (EUReCA) and City Energy Analyst (CEA)) as well as a quasi-steady-state calculation method (Excel spreadsheet), which is more affordable for non-specialist users. The work was carried out to assess the possible deviation of the results between the dynamic and quasi-steady-state calculation methods, as well as to identify any limits and opportunities in the application of the latter procedure, which is currently the official national calculation tool for the implementation of Directive 2010/31/EU. The study shows how the quasi-steady-state method predicts a reliable building energy demand, in line with the results obtained by the two dynamic tools, when considering only geometry and infiltrations as input. However, the limits of the quasi-steady-state method emerge when introducing internal loads, significantly underestimating the energy demand compared to CEA and EUReCA simulations. The results underline the potential application of the quasi-steady-state method to predict energy demand, although dynamics tools are more reliable but far more complex. Major findings through two methods concern the impact of solar heat gains on the overall heating demand at both the single building and the district scale. The different results between the tools provided evidence of a gap in the use of the simplest tool and demonstrated the accuracy and reliability of the proposed approach with a lower computational effort.

Suggested Citation

  • Tiziano Dalla Mora & Lorenzo Teso & Laura Carnieletto & Angelo Zarrella & Piercarlo Romagnoni, 2021. "Comparative Analysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing District in Venice," Energies, MDPI, vol. 14(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5164-:d:618706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
    2. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    3. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    4. Prataviera, Enrico & Romano, Pierdonato & Carnieletto, Laura & Pirotti, Francesco & Vivian, Jacopo & Zarrella, Angelo, 2021. "EUReCA: An open-source urban building energy modelling tool for the efficient evaluation of cities energy demand," Renewable Energy, Elsevier, vol. 173(C), pages 544-560.
    5. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    6. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    7. Zakula, Tea & Bagaric, Marina & Ferdelji, Nenad & Milovanovic, Bojan & Mudrinic, Sasa & Ritosa, Katia, 2019. "Comparison of dynamic simulations and the ISO 52016 standard for the assessment of building energy performance," Applied Energy, Elsevier, vol. 254(C).
    8. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    9. Fonseca, Jimeno A. & Schlueter, Arno, 2015. "Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts," Applied Energy, Elsevier, vol. 142(C), pages 247-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    2. Menglin Dai & Wil O. C. Ward & Hadi Arbabi & Danielle Densley Tingley & Martin Mayfield, 2022. "Scalable Residential Building Geometry Characterisation Using Vehicle-Mounted Camera System," Energies, MDPI, vol. 15(16), pages 1-13, August.
    3. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Perera, A.T.D. & Coccolo, Silvia & Scartezzini, Jean-Louis & Mauree, Dasaraden, 2018. "Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling," Applied Energy, Elsevier, vol. 222(C), pages 847-860.
    3. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    4. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    5. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    6. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    8. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    9. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    10. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    11. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    12. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    15. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    16. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Martín Mosteiro-Romero & Arno Schlueter, 2021. "Effects of Occupants and Local Air Temperatures as Sources of Stochastic Uncertainty in District Energy System Modeling," Energies, MDPI, vol. 14(8), pages 1-30, April.
    18. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    19. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    20. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5164-:d:618706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.