IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp544-560.html
   My bibliography  Save this article

EUReCA: An open-source urban building energy modelling tool for the efficient evaluation of cities energy demand

Author

Listed:
  • Prataviera, Enrico
  • Romano, Pierdonato
  • Carnieletto, Laura
  • Pirotti, Francesco
  • Vivian, Jacopo
  • Zarrella, Angelo

Abstract

Recently, the attention towards Urban Building Energy Modelling has been growing due to the large contribution of cities on the worldwide energy consumption rate. In fact, many models have been developed to simulate buildings and urban energy systems.

Suggested Citation

  • Prataviera, Enrico & Romano, Pierdonato & Carnieletto, Laura & Pirotti, Francesco & Vivian, Jacopo & Zarrella, Angelo, 2021. "EUReCA: An open-source urban building energy modelling tool for the efficient evaluation of cities energy demand," Renewable Energy, Elsevier, vol. 173(C), pages 544-560.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:544-560
    DOI: 10.1016/j.renene.2021.03.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fonseca, Jimeno A. & Schlueter, Arno, 2015. "Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts," Applied Energy, Elsevier, vol. 142(C), pages 247-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edtmayer, Hermann & Nageler, Peter & Heimrath, Richard & Mach, Thomas & Hochenauer, Christoph, 2021. "Investigation on sector coupling potentials of a 5th generation district heating and cooling network," Energy, Elsevier, vol. 230(C).
    2. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    3. Tiziano Dalla Mora & Lorenzo Teso & Laura Carnieletto & Angelo Zarrella & Piercarlo Romagnoni, 2021. "Comparative Analysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing District in Venice," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    2. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    3. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    4. Talebi, Behrang & Haghighat, Fariborz & Tuohy, Paul & Mirzaei, Parham A., 2018. "Validation of a community district energy system model using field measured data," Energy, Elsevier, vol. 144(C), pages 694-706.
    5. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    7. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon), 2019. "Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations," Applied Energy, Elsevier, vol. 250(C), pages 1402-1417.
    8. Hugo Radet & Bruno Sareni & Xavier Roboam, 2023. "Synthesis of Solar Production and Energy Demand Profiles Using Markov Chains for Microgrid Design," Energies, MDPI, vol. 16(23), pages 1-12, December.
    9. Tiziano Dalla Mora & Lorenzo Teso & Laura Carnieletto & Angelo Zarrella & Piercarlo Romagnoni, 2021. "Comparative Analysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing District in Venice," Energies, MDPI, vol. 14(16), pages 1-22, August.
    10. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    11. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    12. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    13. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    14. Fonseca, Jimeno A. & Nevat, Ido & Peters, Gareth W., 2020. "Quantifying the uncertain effects of climate change on building energy consumption across the United States," Applied Energy, Elsevier, vol. 277(C).
    15. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    16. Simone Ferrari & Federica Zagarella & Paola Caputo & Giuliano Dall’O’, 2021. "A GIS-Based Procedure for Estimating the Energy Demand Profiles of Buildings towards Urban Energy Policies," Energies, MDPI, vol. 14(17), pages 1-16, September.
    17. Edgar Lorenzo-Sáez & José-Vicente Oliver-Villanueva & Eloina Coll-Aliaga & Lenin-Guillermo Lemus-Zúñiga & Victoria Lerma-Arce & Antonio Reig-Fabado, 2020. "Energy Efficiency and GHG Emissions Mapping of Buildings for Decision-Making Processes against Climate Change at the Local Level," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    18. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    19. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    20. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:544-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.