IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics0306261923005810.html
   My bibliography  Save this article

Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives

Author

Listed:
  • Li, Han
  • Johra, Hicham
  • de Andrade Pereira, Flavia
  • Hong, Tianzhen
  • Le Dréau, Jérôme
  • Maturo, Anthony
  • Wei, Mingjun
  • Liu, Yapan
  • Saberi-Derakhtenjani, Ali
  • Nagy, Zoltan
  • Marszal-Pomianowska, Anna
  • Finn, Donal
  • Miyata, Shohei
  • Kaspar, Kathryn
  • Nweye, Kingsley
  • O'Neill, Zheng
  • Pallonetto, Fabiano
  • Dong, Bing

Abstract

Energy flexibility, through short-term demand-side management (DSM) and energy storage technologies, is now seen as a major key to balancing the fluctuating supply in different energy grids with the energy demand of buildings. This is especially important when considering the intermittent nature of ever-growing renewable energy production, as well as the increasing dynamics of electricity demand in buildings. This paper provides a holistic review of (1) data-driven energy flexibility key performance indicators (KPIs) for buildings in the operational phase and (2) open datasets that can be used for testing energy flexibility KPIs. The review identifies a total of 48 data-driven energy flexibility KPIs from 87 recent and relevant publications. These KPIs were categorized and analyzed according to their type, complexity, scope, key stakeholders, data requirement, baseline requirement, resolution, and popularity. Moreover, 330 building datasets were collected and evaluated. Of those, 16 were deemed adequate to feature building performing demand response or building-to-grid (B2G) services. The DSM strategy, building scope, grid type, control strategy, needed data features, and usability of these selected 16 datasets were analyzed. This review reveals future opportunities to address limitations in the existing literature: (1) developing new data-driven methodologies to specifically evaluate different energy flexibility strategies and B2G services of existing buildings; (2) developing baseline-free KPIs that could be calculated from easily accessible building sensors and meter data; (3) devoting non-engineering efforts to promote building energy flexibility, standardizing data-driven energy flexibility quantification and verification processes; and (4) curating and analyzing datasets with proper description for energy flexibility assessm.

Suggested Citation

  • Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005810
    DOI: 10.1016/j.apenergy.2023.121217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simone Buffa & Anton Soppelsa & Mauro Pipiciello & Gregor Henze & Roberto Fedrizzi, 2020. "Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control," Energies, MDPI, vol. 13(17), pages 1-25, August.
    2. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    3. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    4. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    5. Bartusch, Cajsa & Alvehag, Karin, 2014. "Further exploring the potential of residential demand response programs in electricity distribution," Applied Energy, Elsevier, vol. 125(C), pages 39-59.
    6. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    7. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    8. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    9. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    10. Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
    11. Razmara, M. & Bharati, G.R. & Hanover, Drew & Shahbakhti, M. & Paudyal, S. & Robinett, R.D., 2017. "Building-to-grid predictive power flow control for demand response and demand flexibility programs," Applied Energy, Elsevier, vol. 203(C), pages 128-141.
    12. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    13. Arnaudo, Monica & Topel, Monika & Puerto, Pablo & Widl, Edmund & Laumert, Björn, 2019. "Heat demand peak shaving in urban integrated energy systems by demand side management - A techno-economic and environmental approach," Energy, Elsevier, vol. 186(C).
    14. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    15. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2021. "Demand response through decentralized optimization in residential areas with wind and photovoltaics," Energy, Elsevier, vol. 223(C).
    16. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    18. Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Monika Hall & Achim Geissler, 2021. "Comparison of Flexibility Factors and Introduction of A Flexibility Classification Using Advanced Heat Pump Control," Energies, MDPI, vol. 14(24), pages 1-19, December.
    20. Mattia Dallapiccola & Grazia Barchi & Jennifer Adami & David Moser, 2021. "The Role of Flexibility in Photovoltaic and Battery Optimal Sizing towards a Decarbonized Residential Sector," Energies, MDPI, vol. 14(8), pages 1-18, April.
    21. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    22. Good, Nicholas & Zhang, Lingxi & Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2015. "High resolution modelling of multi-energy domestic demand profiles," Applied Energy, Elsevier, vol. 137(C), pages 193-210.
    23. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    24. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    25. Gabaldón, A. & García-Garre, A. & Ruiz-Abellón, M.C. & Guillamón, A. & Álvarez-Bel, C. & Fernandez-Jimenez, L.A., 2021. "Improvement of customer baselines for the evaluation of demand response through the use of physically-based load models," Utilities Policy, Elsevier, vol. 70(C).
    26. Aelenei, Daniel & Lopes, Rui Amaral & Aelenei, Laura & Gonçalves, Helder, 2019. "Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system," Renewable Energy, Elsevier, vol. 137(C), pages 189-197.
    27. Francesco Mancini & Gianluigi Lo Basso & Livio De Santoli, 2019. "Energy Use in Residential Buildings: Characterisation for Identifying Flexible Loads by Means of a Questionnaire Survey," Energies, MDPI, vol. 12(11), pages 1-19, May.
    28. Majdalani, Naim & Aelenei, Daniel & Lopes, Rui Amaral & Silva, Carlos Augusto Santo, 2020. "The potential of energy flexibility of space heating and cooling in Portugal," Utilities Policy, Elsevier, vol. 66(C).
    29. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    30. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    31. Ayón, X. & Gruber, J.K. & Hayes, B.P. & Usaola, J. & Prodanović, M., 2017. "An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands," Applied Energy, Elsevier, vol. 198(C), pages 1-11.
    32. Jaume Salom & Meril Tamm & Inger Andresen & Davide Cali & Ábel Magyari & Viktor Bukovszki & Rebeka Balázs & Paraskevi Vivian Dorizas & Zsolt Toth & Sheikh Zuhaib & Clara Mafé & Caroline Cheng & András, 2021. "An Evaluation Framework for Sustainable Plus Energy Neighbourhoods: Moving Beyond the Traditional Building Energy Assessment," Energies, MDPI, vol. 14(14), pages 1-25, July.
    33. Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
    34. Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.
    35. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    36. Ilaria Vigna & Roberta Pernetti & Giovanni Pernigotto & Andrea Gasparella, 2020. "Analysis of the Building Smart Readiness Indicator Calculation: A Comparative Case-Study with Two Panels of Experts," Energies, MDPI, vol. 13(11), pages 1-18, June.
    37. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    38. Paolo Taddeo & Alba Colet & Rafael E. Carrillo & Lluc Casals Canals & Baptiste Schubnel & Yves Stauffer & Ivan Bellanco & Cristina Corchero Garcia & Jaume Salom, 2020. "Management and Activation of Energy Flexibility at Building and Market Level: A Residential Case Study," Energies, MDPI, vol. 13(5), pages 1-18, March.
    39. Müller, F.L. & Jansen, B., 2019. "Large-scale demonstration of precise demand response provided by residential heat pumps," Applied Energy, Elsevier, vol. 239(C), pages 836-845.
    40. Girolama Airò Farulla & Giovanni Tumminia & Francesco Sergi & Davide Aloisio & Maurizio Cellura & Vincenzo Antonucci & Marco Ferraro, 2021. "A Review of Key Performance Indicators for Building Flexibility Quantification to Support the Clean Energy Transition," Energies, MDPI, vol. 14(18), pages 1-19, September.
    41. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    42. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    43. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    44. Huang, Sen & Ye, Yunyang & Wu, Di & Zuo, Wangda, 2021. "An assessment of power flexibility from commercial building cooling systems in the United States," Energy, Elsevier, vol. 221(C).
    45. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    46. Reynders, Glenn & Diriken, Jan & Saelens, Dirk, 2017. "Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings," Applied Energy, Elsevier, vol. 198(C), pages 192-202.
    47. Li, Wenqiang & Gong, Guangcai & Ren, Zhongjun & Ouyang, Qianwu & Peng, Pei & Chun, Liang & Fang, Xi, 2022. "A method for energy consumption optimization of air conditioning systems based on load prediction and energy flexibility," Energy, Elsevier, vol. 243(C).
    48. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    49. Wang, Andong & Li, Rongling & You, Shi, 2018. "Development of a data driven approach to explore the energy flexibility potential of building clusters," Applied Energy, Elsevier, vol. 232(C), pages 89-100.
    50. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    51. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Ademulegun, Oluwasola O. & Hewitt, Neil, 2021. "Mapping demand flexibility: A spatio-temporal assessment of flexibility needs, opportunities and response potential," Applied Energy, Elsevier, vol. 295(C).
    52. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    53. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    54. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    55. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    56. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    57. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    58. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    2. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    3. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
    4. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    5. Zhu, Jie & Niu, Jide & Tian, Zhe & Zhou, Ruoyu & Ye, Chuang, 2022. "Rapid quantification of demand response potential of building HAVC system via data-driven model," Applied Energy, Elsevier, vol. 325(C).
    6. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    7. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    8. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    10. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    11. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    12. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    13. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    14. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
    15. Ali Saberi Derakhtenjani & Andreas K. Athienitis, 2021. "Model Predictive Control Strategies to Activate the Energy Flexibility for Zones with Hydronic Radiant Systems," Energies, MDPI, vol. 14(4), pages 1-19, February.
    16. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    17. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
    19. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    20. Derakhtenjani, Ali Saberi & Athienitis, Andreas K., 2021. "A frequency domain transfer function methodology for thermal characterization and design for energy flexibility of zones with radiant systems," Renewable Energy, Elsevier, vol. 163(C), pages 1033-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.