IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006269.html

A group-based optimization design for PV-BESS in energy-sharing hybrid communities

Author

Listed:
  • Liu, Changlan
  • Liu, Zhongbing
  • Wu, Yaling
  • Li, Benjia
  • Liu, Ruimiao

Abstract

The utilization of a combination of renewable energy and battery energy storage system (BESS) in energy sharing communities can alleviate load pressure on the grid and reduce the overall cost of electricity by improving the efficiency of energy utilization. However, most designs of the BESS in communities neglect the effects of energy-sharing potential, resulting in more energy exchanges between community and the grid and oversized capacity of the BESS. Therefore, this paper proposed a distributed group shared optimization design for grid-connected PV-BESS in a hybrid industrial community, aimed at enhancing energy-sharing potential while minimizing the required storage capacity. Firstly, the buildings in community were divided into four groups to minimize annual operating cost. Then, to reduce the yearly total cost and transmission loss, the capacity of each group was optimized by the genetic algorithm (GA). The results showed that compared to the distributed non-grouping optimization design, the proposed design leveraged the energy-sharing potential of the industrial community, with a 20.7 % reduction of the total battery capacity and a 16.1 % decrease of the total annual cost. The mismatch between PV generation and electricity demand was the main factor affecting grouping and battery capacity allocation. Differences in peak-to-valley tariff ratios have no effect on grouping or battery capacity allocation. When the PV array area increases and the differences in peak-to-valley tariff ratios decrease, the corresponding total optimal battery capacity and annual cost decrease, but transmission loss is increased. This study provides guidance for the shared BESS design and application of community.

Suggested Citation

  • Liu, Changlan & Liu, Zhongbing & Wu, Yaling & Li, Benjia & Liu, Ruimiao, 2025. "A group-based optimization design for PV-BESS in energy-sharing hybrid communities," Applied Energy, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006269
    DOI: 10.1016/j.apenergy.2025.125896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    2. Walker, Awnalisa & Kwon, Soongeol, 2021. "Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage," Applied Energy, Elsevier, vol. 282(PA).
    3. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    4. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    5. Shaojie Li & Tao Zhang & Xiaochen Liu & Xiaohua Liu, 2023. "A Battery Capacity Configuration Method of a Photovoltaic and Battery System Applied in a Building Complex for Increased Self-Sufficiency and Self-Consumption," Energies, MDPI, vol. 16(5), pages 1-18, February.
    6. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    7. Huang, Pei & Sun, Yongjun, 2019. "A clustering based grouping method of nearly zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 235(C), pages 43-55.
    8. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    9. Meng, He & Jia, Hongjie & Xu, Tao & Sun, Jianhang & Wang, Rujing & Wang, Jie, 2024. "Trading mechanism of distributed shared energy storage system considering voltage regulation," Applied Energy, Elsevier, vol. 374(C).
    10. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    11. Kan Xie & Weifeng Zhong & Weijun Li & Yinhao Zhu, 2019. "Distributed Capacity Allocation of Shared Energy Storage Using Online Convex Optimization," Energies, MDPI, vol. 12(9), pages 1-15, April.
    12. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    13. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    14. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2016. "Optimum community energy storage system for demand load shifting," Applied Energy, Elsevier, vol. 174(C), pages 130-143.
    15. Li, Sihui & Peng, Jinqing & Wang, Meng & Wang, Kai & Li, Houpei & Lu, Chujie, 2024. "Approaching nearly zero energy of PV direct air conditioners by integrating building design, load flexibility and PCM," Renewable Energy, Elsevier, vol. 221(C).
    16. Maheri, Alireza, 2014. "Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties," Renewable Energy, Elsevier, vol. 66(C), pages 650-661.
    17. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    18. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    19. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
    20. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    21. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    2. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    3. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    4. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    5. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    6. Talihati, Baligen & Tao, Shengyu & Fu, Shiyi & Zhang, Bowen & Fan, Hongtao & Li, Qifen & Lv, Xiaodong & Sun, Yaojie & Wang, Yu, 2024. "Energy storage sharing in residential communities with controllable loads for enhanced operational efficiency and profitability," Applied Energy, Elsevier, vol. 373(C).
    7. Kerscher, Selina & Koirala, Arpan & Arboleya, Pablo, 2024. "Grid-optimal energy community planning from a systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    9. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    10. Gao, Dian-ce & Sun, Yongjun & Zhang, Xingxing & Huang, Pei & Yelin Zhang,, 2022. "A GA-based NZEB-cluster planning and design optimization method for mitigating grid overvoltage risk," Energy, Elsevier, vol. 243(C).
    11. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
    12. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    13. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    14. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    15. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    16. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    17. May, Ross & Huang, Pei, 2023. "A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets," Applied Energy, Elsevier, vol. 334(C).
    18. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Walker, Awnalisa & Kwon, Soongeol, 2021. "Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage," Applied Energy, Elsevier, vol. 282(PA).
    20. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.