IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4165-d591799.html
   My bibliography  Save this article

Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates

Author

Listed:
  • Nicola Franzoi

    (Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Alessandro Prada

    (Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Sara Verones

    (Water Resources and Energy Agency (APRIE) Autonomous Province of Trento, Piazza Fiera 3, 38122 Trento, Italy)

  • Paolo Baggio

    (Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

Abstract

The European Union, in accordance with its decarbonization objectives, has enacted the Directive (EU) 2018/2001 and subsequently the Directive (EU) 2019/944 that legally recognizes and regulates the formation of citizen energy communities. These are believed to be key enablers for reducing buildings’ carbon footprint by allowing for a wider diffusion of on-site renewable energy generation and by maximizing renewable energy self-consumption. In this study, the benefits of the energy community are assessed through simulations of average Italian buildings of various sizes, different energy efficiency levels, equipped with a photovoltaic system and a heat pump-driven heating system, and located in heating-dominated climates. The work focuses on energy communities both at the apartment scale—i.e., in a multi-family building—and at the building scale—i.e., in a neighborhood. The net energy consumption, the self-consumption, and the self-sufficiency of all the possible energy communities obtainable by combining the different buildings are compared to the baseline case that is represented by the absence of energy sharing between independent building units. The energy community alone at both the building-scale and the neighborhood-scale increases self-consumption by up to 5% and reduces net energy consumption by up to 10%. However, when the energy community is combined with other maximization strategies such as demand-side management and rule-based control, self-consumption can be raised by 15%. These results quantify the lower bound of the achievable self-consumption in energy communities, which, in the rush towards climate neutrality, and in light of these results, could be considered among the solutions for rationalizing the energy consumption of buildings.

Suggested Citation

  • Nicola Franzoi & Alessandro Prada & Sara Verones & Paolo Baggio, 2021. "Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4165-:d:591799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Calise & Massimo Dentice D’Accadia & Carlo Barletta & Vittoria Battaglia & Antun Pfeifer & Neven Duic, 2017. "Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy," Energies, MDPI, vol. 10(10), pages 1-33, October.
    2. Lopes, Rui Amaral & Martins, João & Aelenei, Daniel & Lima, Celson Pantoja, 2016. "A cooperative net zero energy community to improve load matching," Renewable Energy, Elsevier, vol. 93(C), pages 1-13.
    3. Chiara Magni & Alessia Arteconi & Konstantinos Kavvadias & Sylvain Quoilin, 2020. "Modelling the Integration of Residential Heat Demand and Demand Response in Power Systems with High Shares of Renewables," Energies, MDPI, vol. 13(24), pages 1-19, December.
    4. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    5. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    6. Emilio Ghiani & Andrea Giordano & Andrea Nieddu & Luca Rosetti & Fabrizio Pilo, 2019. "Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy)," Energies, MDPI, vol. 12(24), pages 1-14, December.
    7. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    8. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    9. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    10. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    11. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    12. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    13. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamza Gribiss & Mohammad Mohsen Aghelinejad & Farouk Yalaoui, 2023. "Configuration Selection for Renewable Energy Community Using MCDM Methods," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. Margherita Povolato & Alessandro Prada & Sara Verones & Paolo Baggio, 2022. "On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location," Energies, MDPI, vol. 16(1), pages 1-13, December.
    3. Ruben Barreto & Calvin Gonçalves & Luis Gomes & Pedro Faria & Zita Vale, 2022. "Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response," Energies, MDPI, vol. 15(7), pages 1-18, March.
    4. Margherita Povolato & Alessandro Prada & Sara Verones & Silvia Debiasi & Paolo Baggio, 2023. "The Impact of Energy Community Composition on Its Technical and Economic Performance," Energies, MDPI, vol. 16(14), pages 1-15, July.
    5. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    6. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Guido Coletta & Luigi Pellegrino, 2022. "Biomass-Based Renewable Energy Community: Economic Analysis of a Real Case Study," Energies, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.
    3. Margherita Povolato & Alessandro Prada & Sara Verones & Silvia Debiasi & Paolo Baggio, 2023. "The Impact of Energy Community Composition on Its Technical and Economic Performance," Energies, MDPI, vol. 16(14), pages 1-15, July.
    4. Gergely, László Zsolt & Csoknyai, Tamás & Horváth, Miklós, 2022. "Novel load matching indicators for photovoltaic system sizing and evaluation," Applied Energy, Elsevier, vol. 327(C).
    5. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    6. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    7. Alyssa Diva Mustika & Rémy Rigo-Mariani & Vincent Debusschere & Amaury Pachurka, 2022. "New Members Selection for the Expansion of Energy Communities," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    8. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    9. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    10. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    11. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    12. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    13. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    14. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    15. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    16. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    17. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    18. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    19. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    20. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4165-:d:591799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.