IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2380-d778587.html
   My bibliography  Save this article

Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response

Author

Listed:
  • Ruben Barreto

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (P.PORTO), P-4200-072 Porto, Portugal)

  • Calvin Gonçalves

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (P.PORTO), P-4200-072 Porto, Portugal)

  • Luis Gomes

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (P.PORTO), P-4200-072 Porto, Portugal)

  • Pedro Faria

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (P.PORTO), P-4200-072 Porto, Portugal)

  • Zita Vale

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (P.PORTO), P-4200-072 Porto, Portugal)

Abstract

In the energy sector, prosumers are becoming relevant entities for energy management systems since they can share energy with their citizen energy community (CEC). Thus, this paper proposes a novel methodology based on demand response (DR) participation in a CEC context, where unsupervised learning algorithms such as convolutional neural networks and k -means are used. This novel methodology can analyze future events on the grid and balance the consumption and generation using end-user flexibility. The end-users’ invitations to the DR event were according to their ranking obtained through three metrics. These metrics were energy flexibility, participation ratio, and flexibility history of the end-users. During the DR event, a continuous balancing assessment is performed to allow the invitation of additional end-users. Real data from a CEC with 50 buildings were used, where the results demonstrated that the end-users’ participation in two DR events allows reduction of energy costs by EUR 1.31, balancing the CEC energy resources.

Suggested Citation

  • Ruben Barreto & Calvin Gonçalves & Luis Gomes & Pedro Faria & Zita Vale, 2022. "Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response," Energies, MDPI, vol. 15(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2380-:d:778587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael, 2021. "Mixed-integer linear programming based optimization strategies for renewable energy communities," Energy, Elsevier, vol. 237(C).
    2. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    3. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    4. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    5. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    6. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
    7. Nicola Franzoi & Alessandro Prada & Sara Verones & Paolo Baggio, 2021. "Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. Lujano-Rojas, Juan M. & Zubi, Ghassan & Dufo-López, Rodolfo & Bernal-Agustín, José L. & García-Paricio, Eduardo & Catalão, João P.S., 2019. "Contract design of direct-load control programs and their optimal management by genetic algorithm," Energy, Elsevier, vol. 186(C).
    9. Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
    10. Baum, Zvi & Palatnik, Ruslana Rachel & Ayalon, Ofira & Elmakis, David & Frant, Shimon, 2019. "Harnessing households to mitigate renewables intermittency in the smart grid," Renewable Energy, Elsevier, vol. 132(C), pages 1216-1229.
    11. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Canizes & João Costa & Diego Bairrão & Zita Vale, 2023. "Local Renewable Energy Communities: Classification and Sizing," Energies, MDPI, vol. 16(5), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    3. Hamza Gribiss & Mohammad Mohsen Aghelinejad & Farouk Yalaoui, 2023. "Configuration Selection for Renewable Energy Community Using MCDM Methods," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    5. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    6. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Consumer preferences for the design of a demand response quota scheme – Results of a choice experiment in Germany," Energy Policy, Elsevier, vol. 167(C).
    7. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    8. Cruz, Carlos & Alskaif, Tarek & Palomar, Esther & Bravo, Ignacio, 2023. "Prosumers integration in aggregated demand response systems," Energy Policy, Elsevier, vol. 182(C).
    9. Sonsaard, Parinya & Ketjoy, Nipon & Mensin, Yodthong, 2023. "Market strategy options to implement Thailand demand response program policy," Energy Policy, Elsevier, vol. 173(C).
    10. Kühnbach, Matthias & Bekk, Anke & Weidlich, Anke, 2022. "Towards improved prosumer participation: Electricity trading in local markets," Energy, Elsevier, vol. 239(PE).
    11. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    12. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    13. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    14. Lehmann, Nico & Sloot, Daniel & Schüle, Christopher & Ardone, Armin & Fichtner, Wolf, 2023. "The motivational drivers behind consumer preferences for regional electricity – Results of a choice experiment in Southern Germany," Energy Economics, Elsevier, vol. 120(C).
    15. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Duscha, Vicki & Fougeyrollas, Arnaud & Nathani, Carsten & Pfaff, Matthias & Ragwitz, Mario & Resch, Gustav & Schade, Wolfgang & Breitschopf, Barbara & Walz, Rainer, 2016. "Renewable energy deployment in Europe up to 2030 and the aim of a triple dividend," Energy Policy, Elsevier, vol. 95(C), pages 314-323.
    17. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    18. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    19. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    20. Chhetri, Netra & Ghimire, Rajiv & Wagner, Melissa & Wang, Meng, 2020. "Global citizen deliberation: Case of world-wide views on climate and energy," Energy Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2380-:d:778587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.