IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v336y2023ics0306261923000703.html
   My bibliography  Save this article

Economic analysis of energy communities: Investment options and cost allocation

Author

Listed:
  • Li, Na
  • Okur, Özge

Abstract

Energy communities play an important role in the energy transition to future clean and sustainable energy. The economic feasibility of an energy community is largely affected by its investment options: either a third party or households themselves can invest in distributed energy resources. Another common problem for energy communities is cost allocation among local community members to ensure cost recovery. For these reasons, in this paper, an economic feasibility analysis for energy communities with two investment options is conducted: third party investment and self-investment, while also taking into account various cost allocation methods. An optimization model is developed to solve the optimal operation of the energy community with both investment options. The results indicate that it is economically feasible for a third party to invest in an energy community with the right energy prices and payback time. In this case, the third party makes the highest profits when the payback time is 15 years, which is around 50% percent of its total investment cost. In addition, it is possible for the third party to have multiple cost allocation methods within the same energy community. On the other hand, local community members benefit the most from a joint investment, despite the high initial investment costs. The energy costs of each household are largely affected by the payback time and cost allocation methods. These variations are the largest when payback time is 25 years, which is also the system lifetime. Overall, this study provides insights both for third parties and households to make decisions on investment options and cost allocation.

Suggested Citation

  • Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
  • Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000703
    DOI: 10.1016/j.apenergy.2023.120706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923000703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang Cai & Meiying Xie & Haijing Zhang & Zhenli Xu & Faxin Cheng, 2019. "Business Models of Distributed Solar Photovoltaic Power of China: The Business Model Canvas Perspective," Sustainability, MDPI, vol. 11(16), pages 1-27, August.
    2. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
    4. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    5. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    6. Li, Peng & Wang, Zixuan & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "A multi-time-space scale optimal operation strategy for a distributed integrated energy system," Applied Energy, Elsevier, vol. 289(C).
    7. Bauwens, Thomas, 2019. "Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders," Energy Policy, Elsevier, vol. 129(C), pages 841-852.
    8. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    9. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    10. F.G. Reis, Inês & Gonçalves, Ivo & A.R. Lopes, Marta & Henggeler Antunes, Carlos, 2021. "Business models for energy communities: A review of key issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    12. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Na Li & Rudi Hakvoort & Zofia Lukszo, 2021. "Cost Allocation in Integrated Community Energy Systems—Social Acceptance," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    14. Inês, Campos & Guilherme, Pontes Luz & Esther, Marín-González & Swantje, Gährs & Stephen, Hall & Lars, Holstenkamp, 2020. "Regulatory challenges and opportunities for collective renewable energy prosumers in the EU," Energy Policy, Elsevier, vol. 138(C).
    15. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    16. Tongsopit, Sopitsuda & Moungchareon, Sunee & Aksornkij, Apinya & Potisat, Tanai, 2016. "Business models and financing options for a rapid scale-up of rooftop solar power systems in Thailand," Energy Policy, Elsevier, vol. 95(C), pages 447-457.
    17. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    18. Zhang, Sufang, 2016. "Innovative business models and financing mechanisms for distributed solar PV (DSPV) deployment in China," Energy Policy, Elsevier, vol. 95(C), pages 458-467.
    19. Emilio Ghiani & Andrea Giordano & Andrea Nieddu & Luca Rosetti & Fabrizio Pilo, 2019. "Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy)," Energies, MDPI, vol. 12(24), pages 1-14, December.
    20. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    21. Pons-Seres de Brauwer, C. & Cohen, J.J., 2020. "Analysing the potential of citizen-financed community renewable energy to drive Europe's low-carbon energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    22. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    23. Stephan Dempe, 2020. "Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 581-672, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoaib Ahmed & Amjad Ali & Antonio D’Angola, 2024. "A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    2. Simona Barbaro & Grazia Napoli, 2023. "Energy Communities in Urban Areas: Comparison of Energy Strategy and Economic Feasibility in Italy and Spain," Land, MDPI, vol. 12(7), pages 1-24, June.
    3. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Roberta Roberto & Gabriella Ferruzzi & Viviana Negro & Michel Noussan, 2023. "Mapping of Energy Community Development in Europe: State of the Art and Research Directions," Energies, MDPI, vol. 16(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2022. "Cost allocation in integrated community energy systems — Performance assessment," Applied Energy, Elsevier, vol. 307(C).
    2. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Gjorgievski, Vladimir Z. & Velkovski, Bodan & Francesco Demetrio, Minuto & Cundeva, Snezana & Markovska, Natasa, 2023. "Energy sharing in European renewable energy communities: Impact of regulated charges," Energy, Elsevier, vol. 281(C).
    4. F.G. Reis, Inês & Gonçalves, Ivo & A.R. Lopes, Marta & Henggeler Antunes, Carlos, 2021. "Business models for energy communities: A review of key issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    6. Minuto, Francesco Demetrio & Lanzini, Andrea, 2022. "Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    8. Neska, Ewa & Kowalska-Pyzalska, Anna, 2022. "Conceptual design of energy market topologies for communities and their practical applications in EU: A comparison of three case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    10. Romero-Castro, Noelia & Piñeiro-Chousa, Juan & Pérez-Pico, Ada, 2021. "Dealing with heterogeneity and complexity in the analysis of the willingness to invest in community renewable energy in rural areas," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Wang, Ni & Liu, Ziyi & Heijnen, Petra & Warnier, Martijn, 2022. "A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors," Applied Energy, Elsevier, vol. 311(C).
    12. Conradie, Peter D. & De Ruyck, Olivia & Saldien, Jelle & Ponnet, Koen, 2021. "Who wants to join a renewable energy community in Flanders? Applying an extended model of Theory of Planned Behaviour to understand intent to participate," Energy Policy, Elsevier, vol. 151(C).
    13. Hashemipour, Naser & Crespo del Granado, Pedro & Aghaei, Jamshid, 2021. "Dynamic allocation of peer-to-peer clusters in virtual local electricity markets: A marketplace for EV flexibility," Energy, Elsevier, vol. 236(C).
    14. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    16. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    17. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    18. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    19. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    20. Shahriyar Nasirov & Paula Gonzalez & Jose Opazo & Carlos Silva, 2023. "Development of Rooftop Solar under Netbilling in Chile: Analysis of Main Barriers from Project Developers’ Perspectives," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.