IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1920-d1631478.html
   My bibliography  Save this article

Optimal Investment and Sharing Decisions in Renewable Energy Communities with Multiple Investing Members

Author

Listed:
  • Inês Carvalho

    (ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1549-020 Lisboa, Portugal)

  • Jorge Sousa

    (ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1549-020 Lisboa, Portugal
    INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal)

  • José Villar

    (INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • João Lagarto

    (ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1549-020 Lisboa, Portugal
    INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal)

  • Carla Viveiros

    (ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1549-020 Lisboa, Portugal)

  • Filipe Barata

    (ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1549-020 Lisboa, Portugal
    UnIRE, ISEL, Polytechnic University of Lisbon, 1549-020 Lisboa, Portugal
    Low Carbon Energy Conversion Group (LCEC), Electrical Engineering Department, 1959-007 Lisboa, Portugal)

Abstract

The Renewable Energy Communities (RECs) and self-consumption frameworks defined in Directive (EU) 2023/2413 and Directive (EU) 2024/1711 are currently being integrated into national regulations across EU member states, adapting legislation to incorporate these new entities. These regulations establish key principles for individual and collective self-consumption, outlining operational rules such as proximity constraints, electricity sharing mechanisms, surplus electricity management, grid tariffs, and various organizational aspects, including asset sizing, licensing, metering, data exchange, and role definitions. This study introduces a model tailored to optimize investment and energy-sharing decisions within RECs, enabling multiple members to invest in solar photovoltaic (PV) and wind generation assets. The model determines the optimal generation capacity each REC member should install for each technology and calculates the energy shared between members in each period, considering site-specific constraints on renewable deployment. A case study with a four-member REC is used to showcase the model’s functionality, with simulation results underscoring the benefits of CSC over ISC.

Suggested Citation

  • Inês Carvalho & Jorge Sousa & José Villar & João Lagarto & Carla Viveiros & Filipe Barata, 2025. "Optimal Investment and Sharing Decisions in Renewable Energy Communities with Multiple Investing Members," Energies, MDPI, vol. 18(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1920-:d:1631478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    2. Minuto, Francesco Demetrio & Lanzini, Andrea, 2022. "Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Byrnes, Liam & Brown, Colin & Wagner, Liam & Foster, John, 2016. "Reviewing the viability of renewable energy in community electrification: The case of remote Western Australian communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 470-481.
    4. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    5. Wang, Ni & Liu, Ziyi & Heijnen, Petra & Warnier, Martijn, 2022. "A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors," Applied Energy, Elsevier, vol. 311(C).
    6. Irvylle Cavalcante & Jamilson Júnior & Jônatas Augusto Manzolli & Luiz Almeida & Mauro Pungo & Cindy Paola Guzman & Hugo Morais, 2023. "Electric Vehicles Charging Using Photovoltaic Energy Surplus: A Framework Based on Blockchain," Energies, MDPI, vol. 16(6), pages 1-23, March.
    7. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    8. F.G. Reis, Inês & Gonçalves, Ivo & A.R. Lopes, Marta & Henggeler Antunes, Carlos, 2021. "Business models for energy communities: A review of key issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    10. Shoaib Ahmed & Amjad Ali & Antonio D’Angola, 2024. "A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    11. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Weckesser, Tilman & Dominković, Dominik Franjo & Blomgren, Emma M.V. & Schledorn, Amos & Madsen, Henrik, 2021. "Renewable Energy Communities: Optimal sizing and distribution grid impact of photo-voltaics and battery storage," Applied Energy, Elsevier, vol. 301(C).
    13. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Sanajaoba Singh, Sarangthem & Fernandez, Eugene, 2018. "Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system," Energy, Elsevier, vol. 143(C), pages 719-731.
    15. Secchi, Mattia & Barchi, Grazia & Macii, David & Moser, David & Petri, Dario, 2021. "Multi-objective battery sizing optimisation for renewable energy communities with distribution-level constraints: A prosumer-driven perspective," Applied Energy, Elsevier, vol. 297(C).
    16. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    17. João Mello & Cristina de Lorenzo & Fco. Alberto Campos & José Villar, 2023. "Pricing and Simulating Energy Transactions in Energy Communities," Energies, MDPI, vol. 16(4), pages 1-22, February.
    18. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    19. Pons-Seres de Brauwer, C. & Cohen, J.J., 2020. "Analysing the potential of citizen-financed community renewable energy to drive Europe's low-carbon energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulia Taromboli & Laura Campagna & Cristina Bergonzi & Filippo Bovera & Vincenzo Trovato & Marco Merlo & Giuliano Rancilio, 2025. "Renewable Energy Communities: Frameworks and Implementation of Regulatory, Technical, and Social Aspects Across EU Member States," Sustainability, MDPI, vol. 17(9), pages 1-32, May.
    2. Volpato, Gabriele & Carraro, Gianluca & De Giovanni, Luigi & Dal Cin, Enrico & Danieli, Piero & Bregolin, Edoardo & Lazzaretto, Andrea, 2024. "A stochastic optimization procedure to design the fair aggregation of energy users in a Renewable Energy Community," Renewable Energy, Elsevier, vol. 237(PA).
    3. Shoaib Ahmed & Amjad Ali & Antonio D’Angola, 2024. "A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    4. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    5. Lorenzo Becchi & Elisa Belloni & Marco Bindi & Matteo Intravaia & Francesco Grasso & Gabriele Maria Lozito & Maria Cristina Piccirilli, 2024. "A Computationally Efficient Rule-Based Scheduling Algorithm for Battery Energy Storage Systems," Sustainability, MDPI, vol. 16(23), pages 1-21, November.
    6. Mariuzzo, Ivan & Fina, Bernadette & Stroemer, Stefan & Raugi, Marco, 2024. "Economic assessment of multiple energy community participation," Applied Energy, Elsevier, vol. 353(PA).
    7. Davide Strepparava & Federico Rosato & Lorenzo Nespoli & Vasco Medici, 2022. "Privacy and Auditability in the Local Energy Market of an Energy Community with Homomorphic Encryption," Energies, MDPI, vol. 15(15), pages 1-14, July.
    8. Sousa, Jorge & Lagarto, João & Camus, Cristina & Viveiros, Carla & Barata, Filipe & Silva, Pedro & Alegria, Ricardo & Paraíba, Orlando, 2023. "Renewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharing," Energy, Elsevier, vol. 283(C).
    9. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Mariuzzo, Ivan & Fina, Bernadette & Stroemer, Stefan & Corinaldesi, Carlo & Raugi, Marco, 2025. "Grid-friendly optimization of energy communities through enhanced multiple participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    11. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    12. Mehmet Efe Biresselioglu & Siyami Alp Limoncuoglu & Muhittin Hakan Demir & Johannes Reichl & Katrin Burgstaller & Alessandro Sciullo & Edoardo Ferrero, 2021. "Legal Provisions and Market Conditions for Energy Communities in Austria, Germany, Greece, Italy, Spain, and Turkey: A Comparative Assessment," Sustainability, MDPI, vol. 13(20), pages 1-25, October.
    13. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    14. Hoicka, Christina E. & Lowitzsch, Jens & Brisbois, Marie Claire & Kumar, Ankit & Ramirez Camargo, Luis, 2021. "Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities," Energy Policy, Elsevier, vol. 156(C).
    15. Veseli, Argjenta & Moser, Simon & Kubeczko, Klaus & Madner, Verena & Wang, Anna & Wolfsgruber, Klaus, 2021. "Practical necessity and legal options for introducing energy regulatory sandboxes in Austria," Utilities Policy, Elsevier, vol. 73(C).
    16. Neska, Ewa & Kowalska-Pyzalska, Anna, 2022. "Conceptual design of energy market topologies for communities and their practical applications in EU: A comparison of three case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Gabriele Volpato & Gianluca Carraro & Enrico Dal Cin & Sergio Rech, 2024. "On the Different Fair Allocations of Economic Benefits for Energy Communities," Energies, MDPI, vol. 17(19), pages 1-26, September.
    19. Ginevra Balletto & Mara Ladu & Federico Camerin & Emilio Ghiani & Jacopo Torriti, 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    20. Kubli, Merla & Puranik, Sanket, 2023. "A typology of business models for energy communities: Current and emerging design options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1920-:d:1631478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.