IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market

  • Milstein, Irena
  • Tishler, Asher
Registered author(s):

    This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. We consider two generating technologies: (1) conventional fossil-fueled technology such as combined cycle gas turbine (CCGT), and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). In the first stage of the model (game), when only the probability distribution functions of future daily electricity demand and sunshine are known, producers maximize their expected profits by determining the CCGT and PV capacity to be constructed. In the second stage, once daily demand and sunshine conditions become known, each producer selects the daily production by each technology, taking the capacities of both technologies as given, and subject to the availability of the PV capacity, which can be used only if the sun is shining. Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. A large reduction in PV capacity cost increases PV adoption but may also raise the average price. Thus, when considering the promotion of renewable energy to reduce CO2 emissions, regulators should assess the behavior of the electricity market, particularly with respect to characteristics of renewable technologies and demand and supply uncertainties.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Policy.

    Volume (Year): 39 (2011)
    Issue (Month): 7 (July)
    Pages: 3922-3927

    in new window

    Handle: RePEc:eee:enepol:v:39:y:2011:i:7:p:3922-3927
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Tishler, Asher & Milstein, Irena & Woo, Chi-Keung, 2008. "Capacity commitment and price volatility in a competitive electricity market," Energy Economics, Elsevier, vol. 30(4), pages 1625-1647, July.
    2. Martinsen, Dag & Linssen, Jochen & Markewitz, Peter & Vogele, Stefan, 2007. "CCS: A future CO2 mitigation option for Germany?--A bottom-up approach," Energy Policy, Elsevier, vol. 35(4), pages 2110-2120, April.
    3. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    4. Newbery, D. M., 1997. "Competition, Contracts and Entry in the Electricity Spot Market," Cambridge Working Papers in Economics 9707, Faculty of Economics, University of Cambridge.
    5. James B. Bushnell & Erin T. Mansur & Celeste Saravia, 2007. "Vertical Arrangements, Market Structure, and Competition An Analysis of Restructured U.S. Electricity Markets," NBER Working Papers 13507, National Bureau of Economic Research, Inc.
    6. Odenberger, M. & Johnsson, F., 2007. "Achieving 60% CO2 reductions within the UK energy system--Implications for the electricity generation sector," Energy Policy, Elsevier, vol. 35(4), pages 2433-2452, April.
    7. Carpio, Lucio Guido Tapia & Pereira, Amaro Jr., 2007. "Economical efficiency of coordinating the generation by subsystems with the capacity of transmission in the Brazilian market of electricity," Energy Economics, Elsevier, vol. 29(3), pages 454-466, May.
    8. Lise, Wietze & Kruseman, Gideon, 2008. "Long-term price and environmental effects in a liberalised electricity market," Energy Economics, Elsevier, vol. 30(2), pages 230-248, March.
    9. Catherine D. Wolfram, 1999. "Measuring Duopoly Power in the British Electricity Spot Market," American Economic Review, American Economic Association, vol. 89(4), pages 805-826, September.
    10. Pedro Linares & Francisco Javier Santos & Mariano Ventosa & Luis Lapiedra, 2006. "Impacts of the European Emissions Trading Scheme Directive and Permit Assignment Methods on the Spanish Electricity Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 79-98.
    11. Lior, Noam, 2010. "Sustainable energy development: The present (2009) situation and possible paths to the future," Energy, Elsevier, vol. 35(10), pages 3976-3994.
    12. Luke Reedman & Paul Graham & Peter Coombes, 2006. "Using a Real-Options Approach to Model Technology Adoption Under Carbon Price Uncertainty: An Application to the Australian Electricity Generation Sector," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages S64-S73, 09.
    13. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    14. Severin Borenstein & James Bushnell, 1998. "An Empirical Analysis of the Potential for Market Power in California's Electricity Industry," NBER Working Papers 6463, National Bureau of Economic Research, Inc.
    15. Hung-po Chao, 1983. "Peak Load Pricing and Capacity Planning with Demand and Supply Uncertainty," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 179-190, Spring.
    16. Chris Bataille & Nic Rivers & Paulus Mau & Chris Joseph & Jian-Jun Tu, 2007. "How Malleable are the Greenhouse Gas Emission Intensities of the G7 Nations?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 145-170.
    17. Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
    18. Steven L. Puller, 2007. "Pricing and Firm Conduct in California's Deregulated Electricity Market," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 75-87, February.
    19. Tishler, A. & Woo, C.K., 2006. "Likely failure of electricity deregulation: Explanation with application to Israel," Energy, Elsevier, vol. 31(6), pages 845-856.
    20. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2010. "Tax incentives to promote green electricity: An overview of EU-27 countries," Energy Policy, Elsevier, vol. 38(10), pages 6000-6008, October.
    21. Milstein, Irena & Tishler, Asher, 2012. "The inevitability of capacity underinvestment in competitive electricity markets," Energy Economics, Elsevier, vol. 34(1), pages 62-77.
    22. Badcock, Jeremy & Lenzen, Manfred, 2010. "Subsidies for electricity-generating technologies: A review," Energy Policy, Elsevier, vol. 38(9), pages 5038-5047, September.
    23. Khatib, Hisham, 2010. "Review of OECD study into "Projected costs of generating electricity--2010 Edition"," Energy Policy, Elsevier, vol. 38(10), pages 5403-5408, October.
    24. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    25. Wang, Lizhi & Mazumdar, Mainak & Bailey, Matthew D. & Valenzuela, Jorge, 2007. "Oligopoly models for market price of electricity under demand uncertainty and unit reliability," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1309-1321, September.
    26. Green, Richard J, 1996. "Increasing Competition in the British Electricity Spot Market," Journal of Industrial Economics, Wiley Blackwell, vol. 44(2), pages 205-16, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:7:p:3922-3927. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.