IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i8p3849-3864.html
   My bibliography  Save this article

Nuclear power: Understanding the economic risks and uncertainties

Author

Listed:
  • Kessides, Ioannis N.

Abstract

This paper identifies the fundamental elements and critical research tasks of a comprehensive analysis of the costs and benefits of nuclear power relative to investments in alternative baseload technologies. The proposed framework seeks to: (i) identify the set of expected parameter values under which nuclear power becomes cost competitive relative to alternative generating technologies; (ii) identify the main risk drivers and quantify their impacts on the costs of nuclear power; (iii) estimate the nuclear power option value; (iv) assess the nexus between electricity market structure and the commercial attractiveness of nuclear power; (v) evaluate the economics of smaller sized nuclear reactors; (vi) identify options for strengthening the institutional underpinnings of the international safeguards regime; and (vii) evaluate the proliferation resistance of new generation reactors and fuel cycles.

Suggested Citation

  • Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:8:p:3849-3864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00168-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-24.
    2. Spinney, Peter J & Watkins, G Campbell, 1996. "Monte Carlo simulation techniques and electric utility resource decisions," Energy Policy, Elsevier, vol. 24(2), pages 155-163, February.
    3. Geoffrey Rothwell, 2009. "Market Power in Uranium Enrichment," Discussion Papers 08-032, Stanford Institute for Economic Policy Research.
    4. Cabrera-Palmer, Belkis & Rothwell, Geoffrey, 2008. "Why is Brazil enriching uranium?," Energy Policy, Elsevier, vol. 36(7), pages 2570-2577, July.
    5. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-53.
    6. Gollier, Christian & Proult, David & Thais, Francoise & Walgenwitz, Gilles, 2005. "Choice of nuclear power investments under price uncertainty: Valuing modularity," Energy Economics, Elsevier, vol. 27(4), pages 667-685, July.
    7. Rothwell, Geoffrey, 2010. "International light water nuclear fuel fabrication supply: Are fabrication services assured?," Energy Economics, Elsevier, vol. 32(3), pages 538-544, May.
    8. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    9. Chapman, Chris & Ward, Stephen, 1996. "Valuing the flexibility of alternative sources of power generation," Energy Policy, Elsevier, vol. 24(2), pages 129-136, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:eneeco:v:64:y:2017:i:c:p:226-237 is not listed on IDEAS
    2. Mari, Carlo, 2014. "Hedging electricity price volatility using nuclear power," Applied Energy, Elsevier, vol. 113(C), pages 615-621.
    3. Werner, Dan, 2014. "Electricity Market Price Volatility: The Importance of Ramping Costs," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169619, Agricultural and Applied Economics Association.
    4. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    5. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    6. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    7. Huhtala, Anni & Remes, Piia, 2017. "Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants," Energy Policy, Elsevier, vol. 105(C), pages 320-331.
    8. Huhtala, Anni & Remes, Piia, 2016. "Dimming Hopes for Nuclear Power: Quantifying the Social Costs of Perceptions of Risks," Working Papers 57, VATT Institute for Economic Research.
    9. Brook, Barry W., 2012. "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case," Energy Policy, Elsevier, vol. 42(C), pages 4-8.
    10. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    11. Roh, Seungkook & Kim, Wonjoon, 2014. "How can Korea secure uranium enrichment and spent fuel reprocessing rights?," Energy Policy, Elsevier, vol. 68(C), pages 195-198.
    12. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    13. Khatib, Hisham & Difiglio, Carmine, 2016. "Economics of nuclear and renewables," Energy Policy, Elsevier, vol. 96(C), pages 740-750.
    14. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    15. Lucheroni, Carlo & Mari, Carlo, 2017. "CO2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis," Applied Energy, Elsevier, vol. 190(C), pages 278-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:8:p:3849-3864. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.