IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v64y2017icp226-237.html
   My bibliography  Save this article

Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance

Author

Listed:
  • Cardin, Michel-Alexandre
  • Zhang, Sizhe
  • Nuttall, William J.

Abstract

Nuclear power is an important energy source especially in consideration of CO2 emissions and global warming. Deploying nuclear power plants, however, may be challenging when uncertainty in long-term electricity demand and more importantly public acceptance are considered. This is true especially for emerging economies (e.g., India, China) concerned with reducing their carbon footprint in the context of growing economic development, while accommodating a growing population and significantly changing demographics, as well as recent events that may affect the public's perception of nuclear technology. In the aftermath of the Fukushima Daiichi disaster, public acceptance has come to play a central role in continued operations and deployment of new nuclear power systems worldwide. In countries seeing important long-term demographic changes, it may be difficult to determine the future capacity needed, when and where to deploy it over time, and in the most economic manner. Existing studies on capacity deployment typically do not consider such uncertainty drivers in long-term capacity deployment analyses (e.g., +40years). To address these issues, this paper introduces a novel approach to nuclear power systems design and capacity deployment under uncertainty that exploits the idea of strategic flexibility and managerial decision rules. The approach enables dealing more pro-actively with uncertainty and helps identify the most economic deployment paths for new nuclear capacity deployment over multiple sites. One novelty of the study lies in the explicit recognition of public acceptance as an important uncertainty driver affecting economic performance, along with long-term electricity demand. Another novelty is in how the concept of flexibility is exploited to deal with uncertainty and improve expected lifecycle performance (e.g. cost). New design and deployment strategies are developed and analyzed through a multistage stochastic programming framework where decision rules are represented as non-anticipative constraints. This approach provides a new way to devise and analyze adaptation strategies in view of long-term uncertainty fluctuations that is more intuitive and readily usable by system operators than typical solutions obtained from standard real options analysis techniques, which are typically used to analyze flexibility in large-scale, irreversible investment projects. The study considers three flexibility strategies subject to uncertainty in electricity demand and public acceptance: 1) phasing (or staging) capacity deployment over time and space, 2) on-site capacity expansion, and 3) life extension. Numerical analysis shows that flexible designs perform better than rigid optimal design deployment strategies, and the most flexible design combining the above strategies outperforms both more rigid and less flexible design alternatives. It is also demonstrated that a flexible design benefits from the strategies of phasing and capacity expansion most significantly across all three strategies studied. The results provide useful insights for policy and decision-making in countries that are considering new nuclear facility deployment, in light of ongoing challenges surrounding new nuclear builds worldwide.

Suggested Citation

  • Cardin, Michel-Alexandre & Zhang, Sizhe & Nuttall, William J., 2017. "Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance," Energy Economics, Elsevier, vol. 64(C), pages 226-237.
  • Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:226-237
    DOI: 10.1016/j.eneco.2017.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317300890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Guizhen & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Public participation and trust in nuclear power development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 1-11.
    2. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    3. Locatelli, Giorgio & Boarin, Sara & Pellegrino, Francesco & Ricotti, Marco E., 2015. "Load following with Small Modular Reactors (SMR): A real options analysis," Energy, Elsevier, vol. 80(C), pages 41-54.
    4. Behnam Taebi & Ibo van de Poel, 2015. "The socio-technical challenges of nuclear power production and waste management in the post-Fukushima era: editors' overview," Journal of Risk Research, Taylor & Francis Journals, vol. 18(3), pages 267-272, March.
    5. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    7. Jianxin Jiao, 2012. "Product platform flexibility planning by hybrid real options analysis," IISE Transactions, Taylor & Francis Journals, vol. 44(6), pages 431-445.
    8. Louberge, Henri & Villeneuve, Stephane & Chesney, Marc, 2002. "Long-term risk management of nuclear waste: a real options approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 157-180, November.
    9. Paul L. Joskow & John E. Parsons, 2012. "The Future of Nuclear Power After Fukushima," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    10. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    11. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-53.
    12. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    13. Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
    14. Michel-Alexandre Cardin & Qihui Xie & Tsan Sheng Ng & Shuming Wang & Junfei Hu, 2017. "An approach for analyzing and managing flexibility in engineering systems design based on decision rules and multistage stochastic programming," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 1-12, January.
    15. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casper Agaton, 2017. "Coal, Renewable, or Nuclear? A Real Options Approach to Energy Investments in the Philippines," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 6(2), pages 50-62.
    2. Chen, Yong & Gibson, Nathan & Biswas, Arpan & Li, An & Bashiri, Hamid & Sharifi, Erfaneh & Fuentes, Claudio & Hoyle, Christopher & Leon, Arturo S. & Skypeck, Christopher J., 2021. "Valuation of operational flexibility: A case study of Bonneville power administration," Energy Economics, Elsevier, vol. 98(C).
    3. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    5. Perrier, Quentin, 2018. "The second French nuclear bet," Energy Economics, Elsevier, vol. 74(C), pages 858-877.
    6. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    7. Zhang, Xinhua & Gan, Dongmei & Wang, Yali & Liu, Yu & Ge, Jiali & Xie, Rui, 2020. "The impact of price and revenue floors on carbon emission reduction investment by coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    8. Torres-Rincón, Samuel & Bastidas-Arteaga, Emilio & Sánchez-Silva, Mauricio, 2021. "A flexibility-based approach for the design and management of floating offshore wind farms," Renewable Energy, Elsevier, vol. 175(C), pages 910-925.
    9. Zhang, Sizhe & Cardin, Michel-Alexandre, 2017. "Flexibility and real options analysis in emergency medical services systems using decision rules and multi-stage stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 120-140.
    10. Bistline, John E. & Comello, Stephen D. & Sahoo, Anshuman, 2018. "Managerial flexibility in levelized cost measures: A framework for incorporating uncertainty in energy investment decisions," Energy, Elsevier, vol. 151(C), pages 211-225.
    11. Carrara, Samuel, 2020. "Reactor ageing and phase-out policies: global and regional prospects for nuclear power generation," Energy Policy, Elsevier, vol. 147(C).
    12. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    2. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    3. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    4. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    5. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    6. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    7. Barbara Glensk & Reinhard Madlener, 2019. "Energiewende @ Risk: On the Continuation of Renewable Power Generation at the End of Public Policy Support," Energies, MDPI, vol. 12(19), pages 1-25, September.
    8. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    9. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2016. "Sequential Investment in Emerging Technologies under Policy Uncertainty," Discussion Papers 2016/10, Norwegian School of Economics, Department of Business and Management Science.
    10. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2020. "Sequential investment in renewable energy technologies under policy uncertainty," Energy Policy, Elsevier, vol. 137(C).
    11. Marreco, Juliana de Moraes & Carpio, Lucio Guido Tapia, 2006. "Flexibility valuation in the Brazilian power system: A real options approach," Energy Policy, Elsevier, vol. 34(18), pages 3749-3756, December.
    12. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    13. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    14. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    15. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    16. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    17. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    18. Alejandro Mac Cawley & Maximiliano Cubillos & Rodrigo Pascual, 2020. "A real options approach for joint overhaul and replacement strategies with mean reverting prices," Annals of Operations Research, Springer, vol. 286(1), pages 303-324, March.
    19. Zmeskal, Zdenek, 2010. "Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1096-1103, December.
    20. Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.

    More about this item

    Keywords

    Nuclear power plant; Flexibility in engineering design; Real options analysis; Decision rules; Public acceptance; Stochastic programming;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:226-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.