IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp910-925.html
   My bibliography  Save this article

A flexibility-based approach for the design and management of floating offshore wind farms

Author

Listed:
  • Torres-Rincón, Samuel
  • Bastidas-Arteaga, Emilio
  • Sánchez-Silva, Mauricio

Abstract

Floating offshore wind farms have become a gateway to reach locations that are technically and economically infeasible to exploit using fixed platforms. However, the high capital investments and the uncertainty associated with the reliability, capacity factor, technology evolution, electricity demand, and regulatory frameworks negatively affect the cost of energy of this approach. Alternative strategies, such as designing for flexibility, have been shown to increase the value of engineering systems subject to highly uncertain environments. In this article, an analysis based on life-cycle costs and Monte-Carlo simulation is used to determine if floating wind farms with flexible installed capacity result in lower costs of energy than traditionally designed wind farms. Flexibility is introduced using an adaptable platform strategy and an over-dimensioned platform strategy. The results show that the adaptable platform strategy has the potential to reduce the cost of energy up to 18% by increasing the energy generation and the lifetime of some components of the wind farm. Nonetheless, the benefits of flexibility depend on new legislation that allows for lifetime extensions and proper flexibility management policies that utilize the potential built into the systems.

Suggested Citation

  • Torres-Rincón, Samuel & Bastidas-Arteaga, Emilio & Sánchez-Silva, Mauricio, 2021. "A flexibility-based approach for the design and management of floating offshore wind farms," Renewable Energy, Elsevier, vol. 175(C), pages 910-925.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:910-925
    DOI: 10.1016/j.renene.2021.04.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
    2. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    3. Cardin, Michel-Alexandre & Zhang, Sizhe & Nuttall, William J., 2017. "Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance," Energy Economics, Elsevier, vol. 64(C), pages 226-237.
    4. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    5. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    6. Sixiang Zhao & William Benjamin Haskell & Michel-Alexandre Cardin, 2018. "Decision rule-based method for flexible multi-facility capacity expansion problem," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 553-569, July.
    7. Mauricio Sánchez-Silva & Georgia-Ann Klutke, 2016. "Reliability and Life-Cycle Analysis of Deteriorating Systems," Springer Series in Reliability Engineering, Springer, number 978-3-319-20946-3, September.
    8. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    9. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    10. Möller, Bernd & Hong, Lixuan & Lonsing, Reinhard & Hvelplund, Frede, 2012. "Evaluation of offshore wind resources by scale of development," Energy, Elsevier, vol. 48(1), pages 314-322.
    11. Laura Castro-Santos & Elson Martins & C. Guedes Soares, 2016. "Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm," Energies, MDPI, vol. 9(5), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan, Hao & Lv, Junjie & Guo, Jian & Zhang, Wenjie, 2022. "Investigation of spatial correlation on optimal power flow with high penetration of wind power: A comparative study," Applied Energy, Elsevier, vol. 316(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    4. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    5. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    6. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    7. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    8. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    9. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    10. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    11. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    12. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    13. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    14. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    16. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    17. Prässler, Thomas & Schaechtele, Jan, 2012. "Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries," Energy Policy, Elsevier, vol. 45(C), pages 86-101.
    18. Browning, Morgan S. & Lenox, Carol S., 2020. "Contribution of offshore wind to the power grid: U.S. air quality implications," Applied Energy, Elsevier, vol. 276(C).
    19. Hong, Lixuan & Möller, Bernd, 2012. "Feasibility study of China’s offshore wind target by 2020," Energy, Elsevier, vol. 48(1), pages 268-277.
    20. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:910-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.