IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4484-d186264.html
   My bibliography  Save this article

Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms

Author

Listed:
  • Laura Castro-Santos

    (Departamento de Enxeñaría Naval e Industrial, Escola Politécnica Superior, Universidade da Coruña, Esteiro, 15471 Ferrol, Spain)

  • Almudena Filgueira-Vizoso

    (Departamento de Química, Escola Politécnica Superior, Universidade da Coruña, Esteiro, 15471 Ferrol, Spain)

  • Carlos Álvarez-Feal

    (Departamento de Enxeñaría Naval e Industrial, Escola Politécnica Superior, Universidade da Coruña, Esteiro, 15471 Ferrol, Spain)

  • Luis Carral

    (Departamento de Enxeñaría Naval e Industrial, Escola Politécnica Superior, Universidade da Coruña, Esteiro, 15471 Ferrol, Spain)

Abstract

This paper uses a method to analyze the economic influence of the size of floating offshore wind farms. The economic aspects analyzed, LCOE (Levelized Cost Of Energy) and costs, depend on the number of floating offshore wind turbines, which establishes the effect of the size of the farm. This influence has been carried out for a map in a specific location. Regarding the case study, 18 alternatives have been considered taking into account the total power of the farm and the types of floating platforms. These aspects have been studied for the location of Galicia (Spain). Results indicate how LCOE and costs vary when the size of the floating offshore wind farm is increased for the studied kinds of offshore structures. Results are useful for planning an offshore wind farm in deep waters in future investments.

Suggested Citation

  • Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4484-:d:186264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    2. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Iida, Kohei & Okumura, Yuta, 2016. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism," Energy, Elsevier, vol. 99(C), pages 20-31.
    3. Liu, Yichao & Li, Sunwei & Yi, Qian & Chen, Daoyi, 2016. "Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 433-449.
    4. Jensen, Cathrine Ulla & Panduro, Toke Emil & Lundhede, Thomas Hedemark & Nielsen, Anne Sofie Elberg & Dalsgaard, Mette & Thorsen, Bo Jellesmark, 2018. "The impact of on-shore and off-shore wind turbine farms on property prices," Energy Policy, Elsevier, vol. 116(C), pages 50-59.
    5. Jongbloed, R.H. & van der Wal, J.T. & Lindeboom, H.J., 2014. "Identifying space for offshore wind energy in the North Sea. Consequences of scenario calculations for interactions with other marine uses," Energy Policy, Elsevier, vol. 68(C), pages 320-333.
    6. Kausche, Michael & Adam, Frank & Dahlhaus, Frank & Großmann, Jochen, 2018. "Floating offshore wind - Economic and ecological challenges of a TLP solution," Renewable Energy, Elsevier, vol. 126(C), pages 270-280.
    7. Karlõševa, Aljona & Nõmmann, Sulev & Nõmmann, Tea & Urbel-Piirsalu, Evelin & Budziński, Wiktor & Czajkowski, Mikołaj & Hanley, Nick, 2016. "Marine trade-offs: Comparing the benefits of off-shore wind farms and marine protected areas," Energy Economics, Elsevier, vol. 55(C), pages 127-134.
    8. Laura Castro-Santos & Elson Martins & C. Guedes Soares, 2016. "Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm," Energies, MDPI, vol. 9(5), pages 1-27, April.
    9. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    10. Lozano-Minguez, E. & Kolios, A.J. & Brennan, F.P., 2011. "Multi-criteria assessment of offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 36(11), pages 2831-2837.
    11. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    12. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    13. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    14. Yu-Che Tseng & Yuh-Ming Lee & Shih-Jung Liao, 2017. "An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    15. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    16. van der Zwaan, Bob & Rivera-Tinoco, Rodrigo & Lensink, Sander & van den Oosterkamp, Paul, 2012. "Cost reductions for offshore wind power: Exploring the balance between scaling, learning and R&D," Renewable Energy, Elsevier, vol. 41(C), pages 389-393.
    17. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    18. Lamy, Julian V. & Azevedo, Inês L., 2018. "Do tidal stream energy projects offer more value than offshore wind farms? A case study in the United Kingdom," Energy Policy, Elsevier, vol. 113(C), pages 28-40.
    19. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    20. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Castro-Santos & Maite deCastro & Xurxo Costoya & Almudena Filgueira-Vizoso & Isabel Lamas-Galdo & Americo Ribeiro & João M. Dias & Moncho Gómez-Gesteira, 2021. "Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    2. Jan Michna & Krzysztof Rogowski & Galih Bangga & Martin O. L. Hansen, 2021. "Accuracy of the Gamma Re-Theta Transition Model for Simulating the DU-91-W2-250 Airfoil at High Reynolds Numbers," Energies, MDPI, vol. 14(24), pages 1-29, December.
    3. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Influence of Automated Maneuvers on the Economic Feasibility of Tidal Energy Farms," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    5. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Govindan, Kannan, 2023. "Pathways to low carbon energy transition through multi criteria assessment of offshore wind energy barriers," Technological Forecasting and Social Change, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    2. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    3. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    4. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    5. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    8. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    9. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    10. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    11. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    12. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    14. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    15. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    16. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Influence of Automated Maneuvers on the Economic Feasibility of Tidal Energy Farms," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    17. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    18. Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    19. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4484-:d:186264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.