IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5965-d280678.html
   My bibliography  Save this article

Influence of Automated Maneuvers on the Economic Feasibility of Tidal Energy Farms

Author

Listed:
  • Eva Segura

    (Escuela Técnica Superior de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Rafael Morales

    (Escuela Técnica Superior de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • José A. Somolinos

    (Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

The vertiginous increase in the global demand for energy, together with the imbalance between the period during when fossil resources were formed and the rhythm of their consumption, makes it necessary to promote renewable energies in order for energy consumption to coexist with sustainable development. One of the most important challenges as regards renewable energy generation is to be able to move to a new low carbon economy in which energy demands can be met while the levels of CO 2 emitted are reduced. In this respect, most of the energy obtained from marine currents, the most predictable renewable energy source, is located at great depths. In order to take advantage of this energy, different types of technologies are currently being developed whose economic viability necessitates a reduction in costs. The development of automated systems that will allow the orientation and depth of tidal energy converters to change automatically in order to reduce maintenance maneuvers and take advantage of the energy resource in an optimal manner is, therefore, essential. This paper analyzes the economic feasibility of the automation of installation and maintenance maneuvers on tidal energy farms by means of the levelized cost of energy (LCOE) and costs. These aspects have been analyzed in the case of the Alderney Race (United Kingdom). The results obtained show that the use of marine current harnessing devices with automated maneuvers has a relatively important economic advantage over those devices designed with the technology that requires manual maneuvers for the installation and operation procedures, thus enabling the cost of energy to be reduced and increasing the profitability of the project.

Suggested Citation

  • Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Influence of Automated Maneuvers on the Economic Feasibility of Tidal Energy Farms," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5965-:d:280678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    2. Anna Stegman & Adrian De Andres & Henry Jeffrey & Lars Johanning & Stuart Bradley, 2017. "Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach," Energies, MDPI, vol. 10(9), pages 1-20, August.
    3. Considine, Timothy J. & Heo, Eunnyeong, 2000. "Price and inventory dynamics in petroleum product markets," Energy Economics, Elsevier, vol. 22(5), pages 527-548, October.
    4. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    5. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "Economic-financial modeling for marine current harnessing projects," Energy, Elsevier, vol. 158(C), pages 859-880.
    6. Rafael Morales & Lorenzo Fernández & Eva Segura & José A. Somolinos, 2016. "Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC," Energies, MDPI, vol. 9(9), pages 1-16, September.
    7. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    8. Sanchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment," Energy, Elsevier, vol. 72(C), pages 691-701.
    9. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    10. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    11. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    12. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    13. Karakaya, Emrah & Hidalgo, Antonio & Nuur, Cali, 2015. "Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1090-1098.
    14. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    15. Somolinos, J.A. & López, A. & Núñez, L.R. & Morales, R., 2017. "Dynamic model and experimental validation for the control of emersion manoeuvers of devices for marine currents harnessing," Renewable Energy, Elsevier, vol. 103(C), pages 333-345.
    16. Mueller, Markus & Wallace, Robin, 2008. "Enabling science and technology for marine renewable energy," Energy Policy, Elsevier, vol. 36(12), pages 4376-4382, December.
    17. Pacheco, A. & Ferreira, Ó. & Carballo, R. & Iglesias, G., 2014. "Evaluation of the production of tidal stream energy in an inlet channel by coupling field data and numerical modelling," Energy, Elsevier, vol. 71(C), pages 104-117.
    18. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    19. Jeffrey, Henry & Sedgwick, Jonathan & Gerrard, Gavin, 2014. "Public funding for ocean energy: A comparison of the UK and U.S," Technological Forecasting and Social Change, Elsevier, vol. 84(C), pages 155-170.
    20. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    21. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    22. Simone Giorgi & John V. Ringwood, 2013. "Can Tidal Current Energy Provide Base Load?," Energies, MDPI, vol. 6(6), pages 1-19, June.
    23. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Operational expenditure costs for wave energy projects and impacts on financial returns," Renewable Energy, Elsevier, vol. 50(C), pages 1119-1131.
    24. Yu-Che Tseng & Yuh-Ming Lee & Shih-Jung Liao, 2017. "An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    25. Jeffrey, Henry & Jay, Brighid & Winskel, Mark, 2013. "Accelerating the development of marine energy: Exploring the prospects, benefits and challenges," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1306-1316.
    26. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    27. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    2. Zhou Ye & Wenwei Gu & Qiyan Ji, 2022. "Study on Critical Factors Affecting Tidal Current Energy Exploitation in the Guishan Channel Area of Zhoushan," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    3. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    2. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    3. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    4. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    5. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    6. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    7. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "Economic-financial modeling for marine current harnessing projects," Energy, Elsevier, vol. 158(C), pages 859-880.
    8. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    9. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    10. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    11. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    12. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    14. Richardson, Riley Lindsay & Buckham, Bradley & McWhinnie, Lauren Helen, 2022. "Mapping a blue energy future for British Columbia: Creating a holistic framework for tidal stream energy development in remote coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Izabela Godyń & Anna Dubel, 2021. "Evolution of Hydropower Support Schemes in Poland and Their Assessment Using the LCOE Method," Energies, MDPI, vol. 14(24), pages 1-23, December.
    16. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    17. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    18. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    19. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    20. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5965-:d:280678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.