IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014894.html
   My bibliography  Save this article

A numerical investigation of tidal current energy resource potential in a sea strait

Author

Listed:
  • Burić, Melita
  • Grgurić, Sanja
  • Mikulčić, Hrvoje
  • Wang, Xuebin

Abstract

There is a growing research interest in tidal current energy, as it is more predictable when compared to wind and solar. Most past studies on tidal current energy focused on assessing the potential resource of sites with known fast tidal currents. Regions with less energetic tidal currents, but shallow waters for easy installation of energy infrastructure, have not been investigated. One potential tidal current energy location, which fits this categorization, is the strait of Novsko Ždrilo that connects the Novigrad Sea with the Adriatic Sea. In this study a high resolution 3D hydrodynamic model SCHISM was used to estimate the tidal current energy resource potential of this strait. The model results show that tidal current velocities are up to ten times higher than in the outer sea and vary spatially within the strait. However, the obtained velocities in the strait are not sufficient for viable energy exploitation with present tidal energy converter technology level. It is therefore important to further develop turbine type energy converters that could exploit these low tidal current energy resource locations. The applied model can be applied elsewhere for enhanced assessment of tidal energy potential, micro sitting of turbines and environmental impact. Since the current tidal energy potential estimates have been performed mainly with low resolution models, using high resolution models for assessment could lead to overall increase of tidal energy potential.

Suggested Citation

  • Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014894
    DOI: 10.1016/j.energy.2021.121241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guillou, Nicolas, 2017. "Modelling effects of tidal currents on waves at a tidal stream energy site," Renewable Energy, Elsevier, vol. 114(PA), pages 180-190.
    2. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. González-Gorbeña, Eduardo & Pacheco, André & Plomaritis, Theocharis A. & Ferreira, Óscar & Sequeira, Cláudia, 2018. "Estimating the optimum size of a tidal array at a multi-inlet system considering environmental and performance constraints," Applied Energy, Elsevier, vol. 232(C), pages 292-311.
    4. Akhyani, Mahmood & Chegini, Vahid & Aliakbari Bidokhti, Abbasali, 2015. "An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation," Renewable Energy, Elsevier, vol. 74(C), pages 307-317.
    5. Mejia-Olivares, Carlos Joel & Haigh, Ivan D. & Wells, Neil C. & Coles, Daniel S. & Lewis, Matt J. & Neill, Simon P., 2018. "Tidal-stream energy resource characterization for the Gulf of California, México," Energy, Elsevier, vol. 156(C), pages 481-491.
    6. Pacheco, A. & Gorbeña, E. & Plomaritis, T.A. & Garel, E. & Gonçalves, J.M.S. & Bentes, L. & Monteiro, P. & Afonso, C.M.L. & Oliveira, F. & Soares, C. & Zabel, F. & Sequeira, C., 2018. "Deployment characterization of a floatable tidal energy converter on a tidal channel, Ria Formosa, Portugal," Energy, Elsevier, vol. 158(C), pages 89-104.
    7. Neill, Simon P. & Hemer, Mark & Robins, Peter E. & Griffiths, Alana & Furnish, Aaron & Angeloudis, Athanasios, 2021. "Tidal range resource of Australia," Renewable Energy, Elsevier, vol. 170(C), pages 683-692.
    8. Wang, Taiping & Yang, Zhaoqing, 2017. "A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound," Renewable Energy, Elsevier, vol. 114(PA), pages 204-214.
    9. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    10. Kresning, Boma & Hashemi, M. Reza & Neill, Simon P. & Green, J. A. Mattias & Xue, Huijie, 2019. "The impacts of tidal energy development and sea-level rise in the Gulf of Maine," Energy, Elsevier, vol. 187(C).
    11. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    12. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    13. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    14. Iglesias, I. & Bio, A. & Bastos, L. & Avilez-Valente, P., 2021. "Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study," Energy, Elsevier, vol. 222(C).
    15. Lewis, Matt & O’Hara Murray, Rory & Fredriksson, Sam & Maskell, John & de Fockert, Anton & Neill, Simon P & Robins, Peter E, 2021. "A standardised tidal-stream power curve, optimised for the global resource," Renewable Energy, Elsevier, vol. 170(C), pages 1308-1323.
    16. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    17. Ozturk, Mehmet & Sahin, Cihan & Yuksel, Yalcin, 2017. "Current power potential of a sea strait: The Bosphorus," Renewable Energy, Elsevier, vol. 114(PA), pages 191-203.
    18. Coles, D.S. & Blunden, L.S. & Bahaj, A.S., 2017. "Assessment of the energy extraction potential at tidal sites around the Channel Islands," Energy, Elsevier, vol. 124(C), pages 171-186.
    19. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    20. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    21. Chen, Wei-Bo & Liu, Wen-Cheng, 2017. "Assessing the influence of sea level rise on tidal power output and tidal energy dissipation near a channel," Renewable Energy, Elsevier, vol. 101(C), pages 603-616.
    22. Haverson, David & Bacon, John & Smith, Helen C.M. & Venugopal, Vengatesan & Xiao, Qing, 2018. "Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound," Renewable Energy, Elsevier, vol. 126(C), pages 876-887.
    23. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    24. Chen, Wei-Bo & Liu, Wen-Cheng & Hsu, Ming-Hsi, 2013. "Modeling assessment of tidal current energy at Kinmen Island, Taiwan," Renewable Energy, Elsevier, vol. 50(C), pages 1073-1082.
    25. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    26. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    27. Hadžić, Neven & Kozmar, Hrvoje & Tomić, Marko, 2014. "Offshore renewable energy in the Adriatic Sea with respect to the Croatian 2020 energy strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 597-607.
    28. Alonso, Rodrigo & Jackson, Michelle & Santoro, Pablo & Fossati, Mónica & Solari, Sebastián & Teixeira, Luis, 2017. "Wave and tidal energy resource assessment in Uruguayan shelf seas," Renewable Energy, Elsevier, vol. 114(PA), pages 18-31.
    29. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    30. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
    2. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Gianmaria Giannini & Victor Ramos & Paulo Rosa-Santos & Tomás Calheiros-Cabral & Francisco Taveira-Pinto, 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    4. Emiliia Iakovleva & Daniel Guerra & Pavel Tcvetkov & Yaroslav Shklyarskiy, 2022. "Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba," Sustainability, MDPI, vol. 14(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    2. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    4. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
    5. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    6. Thiébaut, Maxime & Quillien, Nolwenn & Maison, Antoine & Gaborieau, Herveline & Ruiz, Nicolas & MacKenzie, Seumas & Connor, Gary & Filipot, Jean-François, 2022. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary," Renewable Energy, Elsevier, vol. 195(C), pages 252-262.
    7. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).
    8. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    10. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    11. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    12. Yang, Zhaoqing & Wang, Taiping & Branch, Ruth & Xiao, Ziyu & Deb, Mithun, 2021. "Tidal stream energy resource characterization in the Salish Sea," Renewable Energy, Elsevier, vol. 172(C), pages 188-208.
    13. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    14. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. M. S. Chowdhury & Kazi Sajedur Rahman & Vidhya Selvanathan & Narissara Nuthammachot & Montri Suklueng & Ali Mostafaeipour & Asiful Habib & Md. Akhtaruzzaman & Nowshad Amin & Kuaanan Techato, 2021. "Current trends and prospects of tidal energy technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8179-8194, June.
    16. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    17. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Silvio Barbarelli & Benedetto Nastasi, 2021. "Tides and Tidal Currents—Guidelines for Site and Energy Resource Assessment," Energies, MDPI, vol. 14(19), pages 1-20, September.
    19. Wei-Bo Chen & Hongey Chen & Lee-Yaw Lin & Yi-Chiang Yu, 2017. "Tidal Current Power Resources and Influence of Sea-Level Rise in the Coastal Waters of Kinmen Island, Taiwan," Energies, MDPI, vol. 10(5), pages 1-15, May.
    20. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.