IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v179y2023ics1364032123001259.html
   My bibliography  Save this article

Tidal current energy harvesting technologies: A review of current status and life cycle assessment

Author

Listed:
  • Li, Gang
  • Zhu, Weidong

Abstract

As an abundant, clean, and predictable source of renewable energy, tidal current energy provides a cost-effective alternative to fossil fuels. Tidal current energy harvesting technologies are still at their early stages of development. Even some advanced demonstration projects with full-scale tidal current energy converters (TCECs) still face considerable technical barriers, and their environmental impacts are unclear. This study presents a comprehensive overview of the state-of-the-art of tidal current energy harvesting schemes and life cycle assessment (LCA) studies of TCECs. By reviewing the state-of-the-art of research and development efforts of tidal current energy harvesting technologies, key advancements required for their successful commercialization at the utility scale in the tidal current energy industry are identified. Detailed LCA studies of TCECs are presented to indicate their energy consumption and environmental impacts. Additionally, some comprehensive comments of development of TCECs and LCA are presented, which can be used to guide decision making towards more sustainable energy practices.

Suggested Citation

  • Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:rensus:v:179:y:2023:i:c:s1364032123001259
    DOI: 10.1016/j.rser.2023.113269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123001259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stacey L. Dolan & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 136-154, April.
    2. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    3. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    4. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    5. Coiro, D.P. & Troise, G. & Scherillo, F. & De Marco, A. & Calise, G. & Bizzarrini, N., 2017. "Development, deployment and experimental test on the novel tethered system GEM for tidal current energy exploitation," Renewable Energy, Elsevier, vol. 114(PA), pages 323-336.
    6. Waters, Shaun & Aggidis, George, 2016. "Tidal range technologies and state of the art in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 514-529.
    7. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 3," Renewable Energy, Elsevier, vol. 59(C), pages 82-91.
    8. Charlier, Roger H., 2007. "Forty candles for the Rance River TPP tides provide renewable and sustainable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2032-2057, December.
    9. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    10. Mohamad Kaddoura & Johan Tivander & Sverker Molander, 2020. "Life Cycle Assessment of Electricity Generation from an Array of Subsea Tidal Kite Prototypes," Energies, MDPI, vol. 13(2), pages 1-18, January.
    11. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    12. Andersson, Johnn & Hellsmark, Hans & Sandén, Björn A., 2018. "Shaping factors in the emergence of technological innovations: The case of tidal kite technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 191-208.
    13. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    14. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    15. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    16. Schleisner, L, 2000. "Life cycle assessment of a wind farm and related externalities," Renewable Energy, Elsevier, vol. 20(3), pages 279-288.
    17. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    18. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    19. Zhiqun Deng & Thomas J. Carlson & Dennis D. Dauble & Gene R. Ploskey, 2011. "Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling," Energies, MDPI, vol. 4(1), pages 1-11, January.
    20. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    21. Chaineux, Marie-Claire & Charlier, Roger H., 2008. "Women's tidal power plant Forty candles for Kislaya Guba TPP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2515-2524, December.
    22. Kelly, K.A. & McManus, M.C. & Hammond, G.P., 2012. "An energy and carbon life cycle assessment of tidal power case study: The proposed Cardiff–Weston severn barrage scheme," Energy, Elsevier, vol. 44(1), pages 692-701.
    23. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    24. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    25. Sheng, Qihu & Jing, Fengmei & Zhang, Liang & Zhou, Nianfu & Wang, Shuqi & Zhang, Zhiyang, 2016. "Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion," Renewable Energy, Elsevier, vol. 96(PA), pages 366-376.
    26. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    27. Mikaël Grondeau & Sylvain Guillou & Philippe Mercier & Emmanuel Poizot, 2019. "Wake of a Ducted Vertical Axis Tidal Turbine in Turbulent Flows, LBM Actuator-Line Approach," Energies, MDPI, vol. 12(22), pages 1-23, November.
    28. Güereca, Leonor Patricia & Gassó, Santiago & Baldasano, José María & Jiménez-Guerrero, Pedro, 2006. "Life cycle assessment of two biowaste management systems for Barcelona, Spain," Resources, Conservation & Recycling, Elsevier, vol. 49(1), pages 32-48.
    29. Li, Gang & Zhu, Weidong, 2022. "Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters," Renewable Energy, Elsevier, vol. 189(C), pages 1120-1132.
    30. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    31. Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
    32. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    33. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    34. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    35. Kinsey, T. & Dumas, G. & Lalande, G. & Ruel, J. & Méhut, A. & Viarouge, P. & Lemay, J. & Jean, Y., 2011. "Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils," Renewable Energy, Elsevier, vol. 36(6), pages 1710-1718.
    36. Mueller, Markus & Wallace, Robin, 2008. "Enabling science and technology for marine renewable energy," Energy Policy, Elsevier, vol. 36(12), pages 4376-4382, December.
    37. Sgobbi, Alessandra & Simões, Sofia G. & Magagna, Davide & Nijs, Wouter, 2016. "Assessing the impacts of technology improvements on the deployment of marine energy in Europe with an energy system perspective," Renewable Energy, Elsevier, vol. 89(C), pages 515-525.
    38. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    39. Johnstone, C.M. & Pratt, D. & Clarke, J.A. & Grant, A.D., 2013. "A techno-economic analysis of tidal energy technology," Renewable Energy, Elsevier, vol. 49(C), pages 101-106.
    40. Hill, Craig & Musa, Mirko & Guala, Michele, 2016. "Interaction between instream axial flow hydrokinetic turbines and uni-directional flow bedforms," Renewable Energy, Elsevier, vol. 86(C), pages 409-421.
    41. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    42. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2," Renewable Energy, Elsevier, vol. 59(C), pages 141-149.
    43. Zhou, Zhibin & Benbouzid, Mohamed & Charpentier, Jean-Frédéric & Scuiller, Franck & Tang, Tianhao, 2017. "Developments in large marine current turbine technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 852-858.
    44. Siala, Firas F. & Liburdy, James A., 2020. "Power estimation of flapping foil energy harvesters using vortex impulse theory," Renewable Energy, Elsevier, vol. 154(C), pages 894-902.
    45. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    46. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    47. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    48. Denny, Eleanor, 2009. "The economics of tidal energy," Energy Policy, Elsevier, vol. 37(5), pages 1914-1924, May.
    49. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    50. Kiho, S. & Shiono, M. & Suzuki, K., 1996. "The power generation from tidal currents by darrieus turbine," Renewable Energy, Elsevier, vol. 9(1), pages 1242-1245.
    51. M. S. Chowdhury & Kazi Sajedur Rahman & Vidhya Selvanathan & Narissara Nuthammachot & Montri Suklueng & Ali Mostafaeipour & Asiful Habib & Md. Akhtaruzzaman & Nowshad Amin & Kuaanan Techato, 2021. "Current trends and prospects of tidal energy technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8179-8194, June.
    52. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    53. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    2. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    3. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    4. Li, Gang & Zhu, Weidong, 2022. "Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters," Renewable Energy, Elsevier, vol. 189(C), pages 1120-1132.
    5. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    6. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    7. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    9. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    11. Yunna Wu & Chuanbo Xu & Hu Xu, 2016. "Optimal Site Selection of Tidal Power Plants Using a Novel Method: A Case in China," Energies, MDPI, vol. 9(10), pages 1-26, October.
    12. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    13. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    14. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    15. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    16. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    17. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    18. Jahanshahi, Akram & Kamali, Mohammadreza & Khalaj, Mohammadreza & Khodaparast, Zahra, 2019. "Delphi-based prioritization of economic criteria for development of wave and tidal energy technologies," Energy, Elsevier, vol. 167(C), pages 819-827.
    19. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    20. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:179:y:2023:i:c:s1364032123001259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.