IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp852-858.html
   My bibliography  Save this article

Developments in large marine current turbine technologies – A review

Author

Listed:
  • Zhou, Zhibin
  • Benbouzid, Mohamed
  • Charpentier, Jean-Frédéric
  • Scuiller, Franck
  • Tang, Tianhao

Abstract

Increasing concerns about environmental issues and depletion of fossil resources lead to a global need for producing more clean energy from renewable sources. For coastal areas or some remote islands, marine tidal current energy is a promising renewable power source due to its high predictability. During the last decades, prototypes of various horizontal and vertical axis marine current turbines (MCT) have been developed around the world. Although reviews on MCTs can be found in some state-of-the-art research papers in the last few years, many of the reported MCT projects were only at the planning/design stage when the papers were written. In fact, some projects do not have any further developments during the several years after their first reporting; and others have already upgraded their original designs and adopted up-scaled versions. In this paper, up-to-date information on large tidal turbine projects over 500kW is focused. The newest achievements of these large tidal current turbine technologies with their developing histories are presented. These technologies represent the industrial solutions for several pre-commercial MCT farm projects in the coming years. New developments in floating MCT technologies are also included. This paper provides a useful background for researchers in the tidal current energy domain and allows them to know the newest developments in large MCT projects around world.

Suggested Citation

  • Zhou, Zhibin & Benbouzid, Mohamed & Charpentier, Jean-Frédéric & Scuiller, Franck & Tang, Tianhao, 2017. "Developments in large marine current turbine technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 852-858.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:852-858
    DOI: 10.1016/j.rser.2016.12.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    2. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    3. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    4. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    5. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    2. Song, Soonseok & Demirel, Yigit Kemal & Atlar, Mehmet & Shi, Weichao, 2020. "Prediction of the fouling penalty on the tidal turbine performance and development of its mitigation measures," Applied Energy, Elsevier, vol. 276(C).
    3. Lam, Wei-Haur & Bhatia, Aalisha, 2013. "Folding tidal turbine as an innovative concept toward the new era of turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 463-473.
    4. Ng, Kai-Wern & Lam, Wei-Haur & Pichiah, Saravanan, 2013. "A review on potential applications of carbon nanotubes in marine current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 331-339.
    5. Shen, Haixue & Zydlewski, Gayle Barbin & Viehman, Haley A. & Staines, Garrett, 2016. "Estimating the probability of fish encountering a marine hydrokinetic device," Renewable Energy, Elsevier, vol. 97(C), pages 746-756.
    6. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    7. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    8. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    9. Akhyani, Mahmood & Chegini, Vahid & Aliakbari Bidokhti, Abbasali, 2015. "An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation," Renewable Energy, Elsevier, vol. 74(C), pages 307-317.
    10. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    11. Calero Quesada, María Concepción & García Lafuente, Jesús & Sánchez Garrido, José Carlos & Sammartino, Simone & Delgado, Javier, 2014. "Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 98-109.
    12. Rtimi, Rajae & Sottolichio, Aldo & Tassi, Pablo, 2022. "The Rance tidal power station: Toward a better understanding of sediment dynamics in response to power generation," Renewable Energy, Elsevier, vol. 201(P1), pages 323-343.
    13. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    14. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    15. Sheng, L. & Zhou, Z. & Charpentier, J.F. & Benbouzid, M.E.H., 2017. "Stand-alone island daily power management using a tidal turbine farm and an ocean compressed air energy storage system," Renewable Energy, Elsevier, vol. 103(C), pages 286-294.
    16. Chong, Heap-Yih & Lam, Wei-Haur, 2013. "Ocean renewable energy in Malaysia: The potential of the Straits of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 169-178.
    17. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    18. Yong Ma & Chao Hu & Yulong Li & Rui Deng, 2018. "Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    19. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "Optimal phasing of the European tidal stream resource using the greedy algorithm with penalty function," Energy, Elsevier, vol. 73(C), pages 997-1006.
    20. de Fockert, Anton & Bijlsma, Arnout C. & O'Mahoney, Tom S.D. & Verbruggen, Wilbert & Scheijgrond, Peter C. & Wang, Zheng B., 2023. "Assessment of the impact of tidal power extraction from the Eastern Scheldt storm surge barrier through the evaluation of a pilot plant," Renewable Energy, Elsevier, vol. 213(C), pages 109-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:852-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.