IDEAS home Printed from
   My bibliography  Save this article

Marine current energy devices: Current status and possible future applications in Ireland


  • Rourke, Fergal O.
  • Boyle, Fergal
  • Reynolds, Anthony


There is a growing demand for the use of renewable energy technologies to generate electricity due to concerns over climate change. The oceans provide a huge potential resource of energy. Energy extraction using marine current energy devices (MCEDs) offers a sustainable alternative to conventional sources and a predictable alternative to other renewable energy technologies. A MCED utilises the kinetic energy of the tides as opposed to the potential energy which is utilised by a tidal barrage. Over the past decade MCEDs have become an increasingly popular method of energy extraction. However, marine current energy technology is still not economically viable on a large scale due to its current stage of development. Ireland has an excellent marine current energy resource as it is an island nation and experiences excellent marine current flows. This paper reviews marine current energy devices, including a detailed up-to-date description of the current status of development. Issues such as network integration, economics, and environmental implications are addressed as well as the application and costs of MCEDs in Ireland.

Suggested Citation

  • Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:3:p:1026-1036

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Coffen-Smout, Scott & Herbert, Glen J., 2000. "Submarine cables: a challenge for ocean management," Marine Policy, Elsevier, vol. 24(6), pages 441-448, November.
    2. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    3. Bryden, Ian G. & Couch, Scott J., 2006. "ME1—marine energy extraction: tidal resource analysis," Renewable Energy, Elsevier, vol. 31(2), pages 133-139.
    4. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    5. Sun, X. & Chick, J.P. & Bryden, I.G., 2008. "Laboratory-scale simulation of energy extraction from tidal currents," Renewable Energy, Elsevier, vol. 33(6), pages 1267-1274.
    6. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    7. Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
    8. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    9. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    10. Schönborn, Alessandro & Chantzidakis, Matthew, 2007. "Development of a hydraulic control mechanism for cyclic pitch marine current turbines," Renewable Energy, Elsevier, vol. 32(4), pages 662-679.
    11. Mirasgedis, S. & Diakoulaki, D. & Papagiannakis, L. & Zervos, A., 2000. "Impact of social costing on the competitiveness of renewable energies: the case of Crete," Energy Policy, Elsevier, vol. 28(1), pages 65-73, January.
    12. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    13. Gross, Robert, 2004. "Technologies and innovation for system change in the UK: status, prospects and system requirements of some leading renewable energy options," Energy Policy, Elsevier, vol. 32(17), pages 1905-1919, November.
    14. Garrett, Chris & Cummins, Patrick, 2008. "Limits to tidal current power," Renewable Energy, Elsevier, vol. 33(11), pages 2485-2490.
    15. de Alegría, Iñigo Martínez & Martín, Jose Luis & Kortabarria, Iñigo & Andreu, Jon & Ereño, Pedro Ibañez, 2009. "Transmission alternatives for offshore electrical power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1027-1038, June.
    16. Leijon, Mats & Bernhoff, Hans & Berg, Marcus & Ågren, Olov, 2003. "Economical considerations of renewable electric energy production—especially development of wave energy," Renewable Energy, Elsevier, vol. 28(8), pages 1201-1209.
    17. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    18. Huber, Claus & Ryan, Lisa & O Gallachoir, Brian & Resch, Gustav & Polaski, Katrina & Bazilian, Morgan, 2007. "Economic modelling of price support mechanisms for renewable energy: Case study on Ireland," Energy Policy, Elsevier, vol. 35(2), pages 1172-1185, February.
    19. Denny, Eleanor, 2009. "The economics of tidal energy," Energy Policy, Elsevier, vol. 37(5), pages 1914-1924, May.
    20. Lee, M.Q. & Lu, C.N. & Huang, H.S., 2009. "Reliability and cost analyses of electricity collection systems of a marine current farm--A Taiwanese case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2012-2021, October.
    21. Kiho, S. & Shiono, M. & Suzuki, K., 1996. "The power generation from tidal currents by darrieus turbine," Renewable Energy, Elsevier, vol. 9(1), pages 1242-1245.
    22. Shields, Mark A. & Dillon, Lora Jane & Woolf, David K. & Ford, Alex T., 2009. "Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK)," Marine Policy, Elsevier, vol. 33(4), pages 635-642, July.
    23. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2009. "Renewable energy resources and technologies applicable to Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1975-1984, October.
    24. Weisser, Daniel, 2004. "On the economics of electricity consumption in small island developing states: a role for renewable energy technologies?," Energy Policy, Elsevier, vol. 32(1), pages 127-140, January.
    25. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    26. Bahaj, A.S. & Batten, W.M.J. & McCann, G., 2007. "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 32(15), pages 2479-2490.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:3:p:1026-1036. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.