IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v9y1996i1p1242-1245.html
   My bibliography  Save this article

The power generation from tidal currents by darrieus turbine

Author

Listed:
  • Kiho, S.
  • Shiono, M.
  • Suzuki, K.

Abstract

This paper reports the method of electric power generation from tidal currents and test results of the system which is specially designed for this purpose. The system consists of a vertical axis turbine, a gear box, an electric generator, and a control unit. The turbine is the vertical axis Darrieus rotor, and has three blades. Authors have studied on power generation from the tidal currents without blocking at bay or strait. Also the real test in tidal currents was conducted from 1983 to 1988, at Kurushima straits in Ehime prefecture, and its results are discussed.

Suggested Citation

  • Kiho, S. & Shiono, M. & Suzuki, K., 1996. "The power generation from tidal currents by darrieus turbine," Renewable Energy, Elsevier, vol. 9(1), pages 1242-1245.
  • Handle: RePEc:eee:renene:v:9:y:1996:i:1:p:1242-1245
    DOI: 10.1016/0960-1481(96)88501-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148196885016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(96)88501-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Y. & Sun, X.J. & Zhu, B. & Zhang, H.J. & Huang, D.G., 2016. "Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine," Renewable Energy, Elsevier, vol. 86(C), pages 316-323.
    2. John M. Crooks & Rodward L. Hewlin & Wesley B. Williams, 2022. "Computational Design Analysis of a Hydrokinetic Horizontal Parallel Stream Direct Drive Counter-Rotating Darrieus Turbine System: A Phase One Design Analysis Study," Energies, MDPI, vol. 15(23), pages 1-25, November.
    3. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M. & Cutrupi, A. & Lo Zupone, G., 2015. "Transients analysis of a tidal currents self-balancing kinetic turbine with floating stabilizer," Applied Energy, Elsevier, vol. 160(C), pages 715-727.
    4. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.
    5. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    6. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    7. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    8. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    9. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    10. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Sleiti, Ahmad K., 2017. "Tidal power technology review with potential applications in Gulf Stream," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 435-441.
    12. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    13. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    14. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    15. T., Micha Premkumar & Chatterjee, Dhiman, 2015. "Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy," Renewable Energy, Elsevier, vol. 77(C), pages 240-249.
    16. Chong, Heap-Yih & Lam, Wei-Haur, 2013. "Ocean renewable energy in Malaysia: The potential of the Straits of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 169-178.
    17. Paillard, B. & Hauville, F. & Astolfi, J.A., 2013. "Simulating variable pitch crossflow water turbines: A coupled unsteady ONERA-EDLIN model and streamtube model," Renewable Energy, Elsevier, vol. 52(C), pages 209-217.
    18. Rosli, R. & Norman, R. & Atlar, M., 2016. "Experimental investigations of the Hydro-Spinna turbine performance," Renewable Energy, Elsevier, vol. 99(C), pages 1227-1234.
    19. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    20. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M. & Cutrupi, A. & Lo Zupone, G., 2014. "Design procedure of an innovative turbine with rotors rotating in opposite directions for the exploitation of the tidal currents," Energy, Elsevier, vol. 77(C), pages 254-264.
    21. Yunna Wu & Chuanbo Xu & Hu Xu, 2016. "Optimal Site Selection of Tidal Power Plants Using a Novel Method: A Case in China," Energies, MDPI, vol. 9(10), pages 1-26, October.
    22. Faridnia, N. & Habibi, D. & Lachowicz, S. & Kavousifard, A., 2019. "Optimal scheduling in a microgrid with a tidal generation," Energy, Elsevier, vol. 171(C), pages 435-443.
    23. Mohammad Hassan Khanjanpour & Akbar A. Javadi, 2020. "Experimental and CFD Analysis of Impact of Surface Roughness on Hydrodynamic Performance of a Darrieus Hydro (DH) Turbine," Energies, MDPI, vol. 13(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:9:y:1996:i:1:p:1242-1245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.