IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v52y2013icp209-217.html
   My bibliography  Save this article

Simulating variable pitch crossflow water turbines: A coupled unsteady ONERA-EDLIN model and streamtube model

Author

Listed:
  • Paillard, B.
  • Hauville, F.
  • Astolfi, J.A.

Abstract

This article describes a new method for simulating unsteady hydrodynamics forces and moments on the blades of a crossflow ‘Darrieus’ turbine with active pitch variation. This method is based on the ONERA-EDLIN dynamic stall model, coupled with a momentum streamtube model to take into account the turbine interference on the flow. Both models are presented, and compared separately with experimental results for a pitching airfoil for the ONERA-EDLIN model; and for Darrieus turbine for the momentum theory. The model coupling is then detailed and compared with experimental data taken from the open literature [1] The turbine has 2 straight blades with a NACA 0012 section operating in water at a mean chord Reynolds number of 4 × 104 for tip speed ratio λ = 2.5, 5 and 7.5. Good agreement was found for average λ = 5, and qualitative agreement could be obtained at low and high λ, where dynamic stall effects and interference effects respectively are predominant. This is positive because λ = 5 is the closest value from the optimal power production point. Variable pitch is finally introduced in the model and several functions are tested in order to increase efficiency. A maximum increase of 53% on the power coefficient was found to occur with a sinusoidal law.

Suggested Citation

  • Paillard, B. & Hauville, F. & Astolfi, J.A., 2013. "Simulating variable pitch crossflow water turbines: A coupled unsteady ONERA-EDLIN model and streamtube model," Renewable Energy, Elsevier, vol. 52(C), pages 209-217.
  • Handle: RePEc:eee:renene:v:52:y:2013:i:c:p:209-217
    DOI: 10.1016/j.renene.2012.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    2. Schönborn, Alessandro & Chantzidakis, Matthew, 2007. "Development of a hydraulic control mechanism for cyclic pitch marine current turbines," Renewable Energy, Elsevier, vol. 32(4), pages 662-679.
    3. Kiho, S. & Shiono, M. & Suzuki, K., 1996. "The power generation from tidal currents by darrieus turbine," Renewable Energy, Elsevier, vol. 9(1), pages 1242-1245.
    4. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    5. Zanette, J. & Imbault, D. & Tourabi, A., 2010. "A design methodology for cross flow water turbines," Renewable Energy, Elsevier, vol. 35(5), pages 997-1009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    2. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    3. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    2. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    3. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    4. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    5. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    6. T., Micha Premkumar & Chatterjee, Dhiman, 2015. "Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy," Renewable Energy, Elsevier, vol. 77(C), pages 240-249.
    7. Zhang, Yongkuang & Feng, Yongjun & Chen, Weixing & Gao, Feng, 2022. "Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction," Energy, Elsevier, vol. 255(C).
    8. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    9. Guney, Mukrimin Sevket, 2011. "Evaluation and measures to increase performance coefficient of hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3669-3675.
    10. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    11. Sleiti, Ahmad K., 2017. "Tidal power technology review with potential applications in Gulf Stream," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 435-441.
    12. Faridnia, N. & Habibi, D. & Lachowicz, S. & Kavousifard, A., 2019. "Optimal scheduling in a microgrid with a tidal generation," Energy, Elsevier, vol. 171(C), pages 435-443.
    13. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    14. Vallet, Maria & Munteanu, Iulian & Bratcu, Antoneta Iuliana & Bacha, Seddik & Roye, Daniel, 2012. "Synchronized control of cross-flow-water-turbine-based twin towers," Renewable Energy, Elsevier, vol. 48(C), pages 382-391.
    15. Yang, Min-Hsiung & Huang, Guan-Ming & Yeh, Rong-Hua, 2016. "Performance investigation of an innovative vertical axis turbine consisting of deflectable blades," Applied Energy, Elsevier, vol. 179(C), pages 875-887.
    16. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    17. Shakil Rehman Sheikh & Syed Hassan Raza Shah & Umar Rauf & Fawad Rauf & Zareena Kausar & Umair Aziz & Muhammad Faizan Shah & Haseeb Yaqoob & Muhammad Bilal Khan Niazi, 2021. "A Low-Cost Sustainable Energy Solution for Pristine Mountain Areas of Developing Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    18. Behrouzi, Fatemeh & Nakisa, Mehdi & Maimun, Adi & Ahmed, Yasser M., 2016. "Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1270-1281.
    19. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M. & Cutrupi, A. & Lo Zupone, G., 2015. "Transients analysis of a tidal currents self-balancing kinetic turbine with floating stabilizer," Applied Energy, Elsevier, vol. 160(C), pages 715-727.
    20. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:52:y:2013:i:c:p:209-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.