IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp875-887.html
   My bibliography  Save this article

Performance investigation of an innovative vertical axis turbine consisting of deflectable blades

Author

Listed:
  • Yang, Min-Hsiung
  • Huang, Guan-Ming
  • Yeh, Rong-Hua

Abstract

The aim of this study is to investigate the performance of an innovative vertical axis turbine which possesses the blade-self-deflection function for ocean current and tidal energy application. The blade deflection is accomplished by interaction of blades and related mechanisms as the turbine rotates. To enhance the turbine performance, it is designed that the blade deflection not only increases the power output for a downstream blade, but also decreases the resistance for an upstream blade. The observation of the prototype in laboratory flume is displayed to validate the feasibility. Furthermore, a commercial code is employed to analyze the turbine performance. The velocity and pressure contours of the calculation domain are simulated to obtain the torque and power output of deflectable-blade turbine. Moreover, the results of performance analysis are validated by the experimental data.

Suggested Citation

  • Yang, Min-Hsiung & Huang, Guan-Ming & Yeh, Rong-Hua, 2016. "Performance investigation of an innovative vertical axis turbine consisting of deflectable blades," Applied Energy, Elsevier, vol. 179(C), pages 875-887.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:875-887
    DOI: 10.1016/j.apenergy.2016.07.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shigetomi, Akinari & Murai, Yuichi & Tasaka, Yuji & Takeda, Yasushi, 2011. "Interactive flow field around two Savonius turbines," Renewable Energy, Elsevier, vol. 36(2), pages 536-545.
    2. Rolland, S.A. & Thatcher, M. & Newton, W. & Williams, A.J. & Croft, T.N. & Gethin, D.T. & Cross, M., 2013. "Benchmark experiments for simulations of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 111(C), pages 1183-1194.
    3. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    4. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    5. Fernandes, Antonio Carlos & Bakhshandeh Rostami, Ali, 2015. "Hydrokinetic energy harvesting by an innovative vertical axis current turbine," Renewable Energy, Elsevier, vol. 81(C), pages 694-706.
    6. Chong, W.T. & Fazlizan, A. & Poh, S.C. & Pan, K.C. & Hew, W.P. & Hsiao, F.B., 2013. "The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane," Applied Energy, Elsevier, vol. 112(C), pages 601-609.
    7. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    8. Rolland, S. & Newton, W. & Williams, A.J. & Croft, T.N. & Gethin, D.T. & Cross, M., 2013. "Simulations technique for the design of a vertical axis wind turbine device with experimental validation," Applied Energy, Elsevier, vol. 111(C), pages 1195-1203.
    9. Li, Ye & Çalişal, Sander M., 2010. "Numerical analysis of the characteristics of vertical axis tidal current turbines," Renewable Energy, Elsevier, vol. 35(2), pages 435-442.
    10. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    11. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
    12. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    13. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    14. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    15. Beran, V. & Sedláček, M. & Marˇs´ık, F., 2013. "A new bladeless hydraulic turbine," Applied Energy, Elsevier, vol. 104(C), pages 978-983.
    16. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines," Renewable Energy, Elsevier, vol. 81(C), pages 926-935.
    17. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces," Renewable Energy, Elsevier, vol. 83(C), pages 67-77.
    18. Yang, Bo & Lawn, Chris, 2011. "Fluid dynamic performance of a vertical axis turbine for tidal currents," Renewable Energy, Elsevier, vol. 36(12), pages 3355-3366.
    19. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    20. Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
    21. Stringer, R.M. & Hillis, A.J. & Zang, J., 2016. "Numerical investigation of laboratory tested cross-flow tidal turbines and Reynolds number scaling," Renewable Energy, Elsevier, vol. 85(C), pages 1316-1327.
    22. Shaughnessy, B.M. & Probert, S.D., 1992. "Partially-blocked savonius rotor," Applied Energy, Elsevier, vol. 43(4), pages 239-249.
    23. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    24. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    25. Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Minniti, Giovanni & Cutrupi, Antonino & Sánchez-Blanco, Manuel, 2012. "Innovative tidal turbine with central deflector for the exploitation of river and sea currents in on-shore installations," Applied Energy, Elsevier, vol. 97(C), pages 944-955.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Liuwei & Li, Feng & Xu, Beibei & Egusquiza, Mònica & Luo, Xingqi & Zhang, Junzhi & Egusquiza, Eduard & Chen, Diyi & Jiang, Wei & Patelli, Edoardo, 2022. "Time-frequency domain characteristics analysis of a hydro-turbine governor system considering vortex rope excitation," Renewable Energy, Elsevier, vol. 183(C), pages 172-187.
    2. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    3. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    4. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    2. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    3. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    4. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    5. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
    6. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    7. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    8. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    9. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    10. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    11. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    12. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    13. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    14. Wenlong Tian & Baowei Song & James H. VanZwieten & Parakram Pyakurel, 2015. "Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes," Energies, MDPI, vol. 8(8), pages 1-15, July.
    15. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    16. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    17. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    18. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    19. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    20. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:875-887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.