IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp1316-1327.html
   My bibliography  Save this article

Numerical investigation of laboratory tested cross-flow tidal turbines and Reynolds number scaling

Author

Listed:
  • Stringer, R.M.
  • Hillis, A.J.
  • Zang, J.

Abstract

The cross-flow, or vertical axis tidal turbine, is a prominent configuration of marine renewable energy device aimed at converting tidal currents into electrical energy. This paper highlights the hydrodynamic limitations of laboratory testing such devices and uses numerical simulation to explore the effect of device scaling. Using a 2D Reynolds-Averaged Navier–Stokes (RANS) numerical approach, a single turbine blade is initially modelled and validated against published data. The resultant numerical model is then expanded to emulate an experimental cross-flow tidal turbine designed and tested by the University of Oxford. The simulated turbine achieves a close quantitative match for coefficients of power, torque and thrust, forming the basis of a study exploring the effects of Reynolds number scaling in three alternative operating conditions. It is discovered that the coefficient of power (CP) increases with Re¯ without a ubiquitous correlation until an Re¯ of ∼350,000. Above this Re¯ the CP values for all three operation conditions become both proportional and predictable. The study represents a significant contribution to understanding the application of detailed numerical modelling techniques to cross-flow tidal turbines. The findings, with regard to scaling from laboratory data, could reduce uncertainty and development costs for new and existing devices.

Suggested Citation

  • Stringer, R.M. & Hillis, A.J. & Zang, J., 2016. "Numerical investigation of laboratory tested cross-flow tidal turbines and Reynolds number scaling," Renewable Energy, Elsevier, vol. 85(C), pages 1316-1327.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:1316-1327
    DOI: 10.1016/j.renene.2015.07.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 3," Renewable Energy, Elsevier, vol. 59(C), pages 82-91.
    2. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2," Renewable Energy, Elsevier, vol. 59(C), pages 141-149.
    3. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Min-Hsiung & Huang, Guan-Ming & Yeh, Rong-Hua, 2016. "Performance investigation of an innovative vertical axis turbine consisting of deflectable blades," Applied Energy, Elsevier, vol. 179(C), pages 875-887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benchikh Le Hocine, Alla Eddine & Jay Lacey, R.W. & Poncet, Sébastien, 2019. "Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine," Renewable Energy, Elsevier, vol. 143(C), pages 1890-1901.
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    4. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    5. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Kinsey, Thomas & Dumas, Guy, 2017. "Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines," Renewable Energy, Elsevier, vol. 103(C), pages 239-254.
    7. Esteban Ferrer & Oliver M.F. Browne & Eusebio Valero, 2017. "Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines," Energies, MDPI, vol. 10(10), pages 1-21, October.
    8. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 3," Renewable Energy, Elsevier, vol. 59(C), pages 82-91.
    9. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    10. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2," Renewable Energy, Elsevier, vol. 59(C), pages 141-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:1316-1327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.