IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp1170-1197.html
   My bibliography  Save this article

Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation

Author

Listed:
  • C M, Shashikumar
  • Madav, Vasudeva

Abstract

The Savonius rotor is one of the simple and cost-effective vertical axis drag type devices for hydropower generation. The main drawback of the Savonius hydrokinetic turbine is its low performance due to negative torque developed by returning blade profile. In this paper, the performance of modified V-shaped rotor blades with different V-angles ranging from 90° to 40°, by maintaining fixed edge length, arc radius and aspect ratio of 0.7 is investigated. The numerical analysis is carried out to estimate the optimum V-angle by maintaining 70 mm depth of water with an inlet velocity of 0.3090 m/s. The numerical study revealed that, for 80° V-angle rotor blade profile, the maximum coefficient of power was found to be 0.2279 at a tip speed ratio of 0.9. This optimum V-angle model was used for experimental analysis to study the effect of aspect ratio ranging from 0.7 to 1.75 using top, middle and bottom plates by maintaining 140 mm depth of water and inlet velocity of 0.513 m/s. The rotor blade with two endplates and one middle plate with an aspect ratio of 1.75 has shown a significant increase of performance by 86.13% at a tip speed ratio of 0.86 as compared to turbine blade with two endplates.

Suggested Citation

  • C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1170-1197
    DOI: 10.1016/j.renene.2021.05.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    2. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    3. Han, Yadong & Tan, Lei, 2020. "Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 162(C), pages 144-150.
    4. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    5. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    6. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    7. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    8. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    9. Mereu, R. & Federici, D. & Ferrari, G. & Schito, P. & Inzoli, F., 2017. "Parametric numerical study of Savonius wind turbine interaction in a linear array," Renewable Energy, Elsevier, vol. 113(C), pages 1320-1332.
    10. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2017. "A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines," Energy, Elsevier, vol. 121(C), pages 341-355.
    11. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    12. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    13. Ramadan, A. & Yousef, K. & Said, M. & Mohamed, M.H., 2018. "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, Elsevier, vol. 151(C), pages 839-853.
    14. Baoshou Zhang & Baowei Song & Zhaoyong Mao & Wenlong Tian & Boyang Li & Bo Li, 2017. "A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines," Energies, MDPI, vol. 10(3), pages 1-20, March.
    15. C M, Shashikumar & Honnasiddaiah, Ramesh & Hindasageri, Vijaykumar & Madav, Vasudeva, 2021. "Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes," Renewable Energy, Elsevier, vol. 163(C), pages 845-857.
    16. Driss, Zied & Mlayeh, Olfa & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2014. "Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor," Energy, Elsevier, vol. 74(C), pages 506-517.
    17. Jaohindy, Placide & McTavish, Sean & Garde, François & Bastide, Alain, 2013. "An analysis of the transient forces acting on Savonius rotors with different aspect ratios," Renewable Energy, Elsevier, vol. 55(C), pages 286-295.
    18. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    19. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    20. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    21. Loots, I. & van Dijk, M. & Barta, B. & van Vuuren, S.J. & Bhagwan, J.N., 2015. "A review of low head hydropower technologies and applications in a South African context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1254-1268.
    22. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    23. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    24. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    25. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    26. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    27. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    28. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape of thick blades for a hydraulic Savonius turbine," Renewable Energy, Elsevier, vol. 134(C), pages 629-638.
    29. Shaughnessy, B.M. & Probert, S.D., 1992. "Partially-blocked savonius rotor," Applied Energy, Elsevier, vol. 43(4), pages 239-249.
    30. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    2. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    2. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    3. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Krzysztof Sobczak & Damian Obidowski & Piotr Reorowicz & Emil Marchewka, 2020. "Numerical Investigations of the Savonius Turbine with Deformable Blades," Energies, MDPI, vol. 13(14), pages 1-20, July.
    5. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    6. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    7. C M, Shashikumar & Honnasiddaiah, Ramesh & Hindasageri, Vijaykumar & Madav, Vasudeva, 2021. "Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes," Renewable Energy, Elsevier, vol. 163(C), pages 845-857.
    8. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    9. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    10. Kang, Can & Zhao, Hexiang & Zhang, Yongchao & Ding, Kejin, 2021. "Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor," Renewable Energy, Elsevier, vol. 172(C), pages 290-303.
    11. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    12. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    13. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    14. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    15. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    16. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    17. Zhaoyong Mao & Guangyong Yang & Tianqi Zhang & Wenlong Tian, 2020. "Aerodynamic Performance Analysis of a Building-Integrated Savonius Turbine," Energies, MDPI, vol. 13(10), pages 1-21, May.
    18. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    19. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    20. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1170-1197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.