IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp286-295.html
   My bibliography  Save this article

An analysis of the transient forces acting on Savonius rotors with different aspect ratios

Author

Listed:
  • Jaohindy, Placide
  • McTavish, Sean
  • Garde, François
  • Bastide, Alain

Abstract

The present study deals with the analysis of the transient forces of a Savonius vertical axis wind turbine (VAWT) using computational fluid dynamics (CFD). Unsteady, Reynolds Averaged Navier–Stokes CFD simulations were conducted using two different rotors and two simulation methodologies. The first rotor had an aspect ratio of 1.1 and simulations were conducted by incorporating the dynamic equations of the rigid-rotor motion using a one degree-of-freedom (1-DOF) module to evaluate the rotor's free motion. The second rotor had an aspect ratio of 0.7 and simulations were conducted by specifying a fixed rotational velocity. The predicted torque and power curves were validated using experimental data. The transient forces from the two rotor blades, the resultant forces, and the longitudinal drag and lateral lift coefficients were evaluated using the two complementary data sets. The lateral force coefficient had a large contribution to the rotor torque at low azimuth angles and at low tip speed ratios (λ). At tip speed ratios above 0.6, the effect of the longitudinal drag force on the rotor operation increased and the lateral lift force contribution decreased. The resultant force angle was shown to become more acute due to the increase in the longitudinal force with increasing λ.

Suggested Citation

  • Jaohindy, Placide & McTavish, Sean & Garde, François & Bastide, Alain, 2013. "An analysis of the transient forces acting on Savonius rotors with different aspect ratios," Renewable Energy, Elsevier, vol. 55(C), pages 286-295.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:286-295
    DOI: 10.1016/j.renene.2012.12.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McTavish, S. & Feszty, D. & Sankar, T., 2012. "Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation," Renewable Energy, Elsevier, vol. 41(C), pages 171-179.
    2. D’Alessandro, V. & Montelpare, S. & Ricci, R. & Secchiaroli, A., 2010. "Unsteady Aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance," Energy, Elsevier, vol. 35(8), pages 3349-3363.
    3. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    4. Ladopoulos, E.G., 1995. "Non-linear singular integral computational analysis for unsteady flow problems," Renewable Energy, Elsevier, vol. 6(8), pages 901-906.
    5. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Performance tests on helical Savonius rotors," Renewable Energy, Elsevier, vol. 34(3), pages 521-529.
    6. Pope, K. & Rodrigues, V. & Doyle, R. & Tsopelas, A. & Gravelsins, R. & Naterer, G.F. & Tsang, E., 2010. "Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(5), pages 1043-1051.
    7. Gupta, R. & Biswas, A. & Sharma, K.K., 2008. "Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor," Renewable Energy, Elsevier, vol. 33(9), pages 1974-1981.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    2. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz & Tumidajski, Jakub, 2023. "Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach," Renewable Energy, Elsevier, vol. 216(C).
    3. Mereu, R. & Federici, D. & Ferrari, G. & Schito, P. & Inzoli, F., 2017. "Parametric numerical study of Savonius wind turbine interaction in a linear array," Renewable Energy, Elsevier, vol. 113(C), pages 1320-1332.
    4. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    5. Ducoin, A. & Shadloo, M.S. & Roy, S., 2017. "Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades," Renewable Energy, Elsevier, vol. 105(C), pages 374-385.
    6. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    7. Khairil Anwar & Syukri Himran & Luther Sule & Nasruddin Azis, 2018. "Numerical Investigation Of Modified Savonius Wind Turbine with Various Straight Blade Angle," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 38-42, September.
    8. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    9. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    10. Krzysztof Doerffer & Janusz Telega & Piotr Doerffer & Paulina Hercel & Andrzej Tomporowski, 2021. "Dependence of Power Characteristics on Savonius Rotor Segmentation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    11. Kai Lv & Yudong Xie & Xinbiao Zhang & Yong Wang, 2020. "Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    12. repec:zib:zjmerd:3jmerd2018-38-42 is not listed on IDEAS
    13. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    14. Cuevas-Carvajal, N. & Cortes-Ramirez, J.S. & Norato, Julian A. & Hernandez, C. & Montoya-Vallejo, M.F., 2022. "Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Alaimo & Antonio Esposito & Alberto Milazzo & Calogero Orlando & Flavio Trentacosti, 2013. "Slotted Blades Savonius Wind Turbine Analysis by CFD," Energies, MDPI, vol. 6(12), pages 1-17, December.
    2. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    3. Zhou, Tong & Rempfer, Dietmar, 2013. "Numerical study of detailed flow field and performance of Savonius wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 373-381.
    4. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
    5. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    6. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    7. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    8. Trivellato, F. & Raciti Castelli, M., 2014. "On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis," Renewable Energy, Elsevier, vol. 62(C), pages 53-62.
    9. Wenlong Tian & Baowei Song & James H. VanZwieten & Parakram Pyakurel, 2015. "Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes," Energies, MDPI, vol. 8(8), pages 1-15, July.
    10. Hassanzadeh, Reza & Yaakob, Omar bin & Taheri, Mohammad Mahdi & Hosseinzadeh, Mehdi & Ahmed, Yasser M., 2018. "An innovative configuration for new marine current turbine," Renewable Energy, Elsevier, vol. 120(C), pages 413-422.
    11. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    12. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    13. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    14. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie, 2016. "Empirical and numerical analysis of small wind turbine aerodynamic performance at a plateau terrain in Kenya," Renewable Energy, Elsevier, vol. 90(C), pages 377-385.
    15. McTavish, S. & Feszty, D. & Sankar, T., 2012. "Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation," Renewable Energy, Elsevier, vol. 41(C), pages 171-179.
    16. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    17. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    18. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    19. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    20. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:286-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.