IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8579-d430194.html
   My bibliography  Save this article

Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting

Author

Listed:
  • Kai Lv

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Yudong Xie

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, Jinan 250061, China)

  • Xinbiao Zhang

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Yong Wang

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, Jinan 250061, China)

Abstract

Integrating vertical-axis runners into ball valves for energy harvesting from pressurized pipes in water supply systems has become a promising scheme of self-supplying power (referred to as the “GreenValve” scheme). In addition to energy harvesting, the GreenValve configuration also has the function of fluid regulating, which makes a qualitative breakthrough in both structure and function. However, the runner specially used to match the ball valve has not been fully studied and designed. Hence, based on the traditional Savonius rotor, a modified semi-elliptical runner is proposed in this study. To better match the ball valve structurally, the roundness of the runner at blade tip position is improved and, thus, the initial runner configuration is obtained. Moreover, research on blade profile flatness and runner aspect ratio is conducted in FLUENT software to be more functionally compatible with the ball valve. Numerical results indicate that the GreenValve always performs best in terms of shaft power at 25% opening regardless of the aspect ratio and the flatness. When the flatness value is equal to 0.7, the GreenValve presents the maximum shaft power and the second highest flow coefficient which is only 1.9% lower than the maximum value. Comparison results of three models with different aspect ratios reveal that the model with the smallest aspect ratio has a slight reduction in flow capacity while a significant improvement in shaft power, reaching a maximum shaft power of 78.6W.

Suggested Citation

  • Kai Lv & Yudong Xie & Xinbiao Zhang & Yong Wang, 2020. "Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8579-:d:430194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang Song Hao & Ronald Garcia, 2014. "Development of a Digital and Battery-Free Smart Flowmeter," Energies, MDPI, vol. 7(6), pages 1-15, June.
    2. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    3. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
    4. Rosenbloom, Daniel & Meadowcroft, James, 2014. "Harnessing the Sun: Reviewing the potential of solar photovoltaics in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 488-496.
    5. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2013. "Performance of a low-head pico-hydro Turgo turbine," Applied Energy, Elsevier, vol. 102(C), pages 1114-1126.
    6. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    7. Yu Shao & Yanxi Yu & Tingchao Yu & Shipeng Chu & Xiaowei Liu, 2019. "Leakage Control and Energy Consumption Optimization in the Water Distribution Network Based on Joint Scheduling of Pumps and Valves," Energies, MDPI, vol. 12(15), pages 1-18, August.
    8. Haibat Ali & Jae-ho Choi, 2019. "A Review of Underground Pipeline Leakage and Sinkhole Monitoring Methods Based on Wireless Sensor Networking," Sustainability, MDPI, vol. 11(15), pages 1-24, July.
    9. Jaohindy, Placide & McTavish, Sean & Garde, François & Bastide, Alain, 2013. "An analysis of the transient forces acting on Savonius rotors with different aspect ratios," Renewable Energy, Elsevier, vol. 55(C), pages 286-295.
    10. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
    11. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    12. Jiyun, Du & Zhicheng, Shen & Hongxing, Yang, 2018. "Numerical study on the impact of runner inlet arc angle on the performance of inline cross-flow turbine used in urban water mains," Energy, Elsevier, vol. 158(C), pages 228-237.
    13. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    14. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    15. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    16. Saha, U.K. & Rajkumar, M. Jaya, 2006. "On the performance analysis of Savonius rotor with twisted blades," Renewable Energy, Elsevier, vol. 31(11), pages 1776-1788.
    17. Bhayo, Bilawal A. & Al-Kayiem, Hussain H., 2017. "Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system," Energy, Elsevier, vol. 138(C), pages 752-763.
    18. Jiajia Wu & Donghui Ma & Wei Wang & Zhao Han, 2020. "Research on Sensor Placement for Disaster Prevention in Water Distribution Networks for Important Users," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    19. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    20. Akhtar, Fayaz & Rehmani, Mubashir Husain, 2015. "Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 769-784.
    21. Al-Kayiem, Hussain H. & Bhayo, Bilawal A. & Assadi, Mohsen, 2016. "Comparative critique on the design parameters and their effect on the performance of S-rotors," Renewable Energy, Elsevier, vol. 99(C), pages 1306-1317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Kai & Xie, Yudong & Wang, Yong & Sun, Guang, 2021. "Performance investigations of a control valve with the function of energy harvesting," Energy, Elsevier, vol. 214(C).
    2. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    4. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    5. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
    6. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    7. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    8. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    9. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    10. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    11. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    12. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    13. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2022. "Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model," Energy, Elsevier, vol. 241(C).
    14. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
    15. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    16. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    17. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    18. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    19. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    20. Bhayo, Bilawal A. & Al-Kayiem, Hussain H., 2017. "Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system," Energy, Elsevier, vol. 138(C), pages 752-763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8579-:d:430194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.