IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp341-355.html
   My bibliography  Save this article

A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines

Author

Listed:
  • Zhang, Baoshou
  • Song, Baowei
  • Mao, Zhaoyong
  • Tian, Wenlong

Abstract

The long wake of a wind turbine has a significant impact on the performance of downstream turbines. Under the inspiration of migrating geese flying in a V or I formation to save energy, a novel wake energy reuse method is proposed to optimize the layout for Savonius-type vertical axis wind turbines (S-VAWT). VAWT wakes include a series of high speed and energy zones. On both sides of the upstream turbine, 7×16 transient two-dimensional numerical simulations are performed with Fluent to investigate wake structure, interaction effect and power coefficients (Cp) of downstream turbines. Based on Kriging Method, a response surface model (Surrogate model) is created to describe the relationship between the optimization objective Cp and layout positions. Finally, particle swarm optimization algorithm is applied to find the optimal relative layout position (5.25 m, −2.18 m) of the downstream turbine. The optimal position is located in the periodic high speed zone of the wake on the advancing blade side. And the optimal position is suitable for multi-turbines in a large wind farm. The optimization results show that Cp of downstream turbines at optimal layout position is significantly increased from 0.2477 to 0.3044 (22.89% higher).

Suggested Citation

  • Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2017. "A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines," Energy, Elsevier, vol. 121(C), pages 341-355.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:341-355
    DOI: 10.1016/j.energy.2017.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McTavish, S. & Feszty, D. & Sankar, T., 2012. "Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation," Renewable Energy, Elsevier, vol. 41(C), pages 171-179.
    2. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    3. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    4. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    5. Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2016. "Wake to wake interaction of floating wind turbine models in free pitch motion: An eddy viscosity and mixing length approach," Renewable Energy, Elsevier, vol. 85(C), pages 666-676.
    6. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    7. Zuo, Wei & Wang, Xiaodong & Kang, Shun, 2016. "Numerical simulations on the wake effect of H-type vertical axis wind turbines," Energy, Elsevier, vol. 106(C), pages 691-700.
    8. Shigetomi, Akinari & Murai, Yuichi & Tasaka, Yuji & Takeda, Yasushi, 2011. "Interactive flow field around two Savonius turbines," Renewable Energy, Elsevier, vol. 36(2), pages 536-545.
    9. Leonardo P. Chamorro & Fernando Porté-Agel, 2011. "Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study," Energies, MDPI, vol. 4(11), pages 1-21, November.
    10. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    2. Yukai Li & Baowei Song & Zhaoyong Mao & Wenlong Tian, 2018. "Analysis and Optimization of the Electromagnetic Performance of a Novel Stator Modular Ring Drive Thruster Motor," Energies, MDPI, vol. 11(6), pages 1-23, June.
    3. Yixiao Zhang & Eddie Yin Kwee Ng & Shivansh Mittal, 2023. "The Biffis Canal Hydrodynamic System Performance Study of Drag-Dominant Tidal Turbine Using Moment Balancing Method," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    4. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    5. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    6. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    7. Kumail Abdulkareem Hadi Al-Gburi & Balasem Abdulameer Jabbar Al-quraishi & Firas Basim Ismail Alnaimi & Ee Sann Tan & Ali Hussein Shamman Al-Safi, 2022. "Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-23, November.
    8. Davide Cazzaro & Gabriele Bedon & David Pisinger, 2023. "Vertical Axis Wind Turbine Layout Optimization," Energies, MDPI, vol. 16(6), pages 1-16, March.
    9. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    10. Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
    11. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    12. Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
    13. Heejeon Im & Bumsuk Kim, 2022. "Power Performance Analysis Based on Savonius Wind Turbine Blade Design and Layout Optimization through Rotor Wake Flow Analysis," Energies, MDPI, vol. 15(24), pages 1-17, December.
    14. Grönman, Aki & Backman, Jari & Hansen-Haug, Markus & Laaksonen, Mikko & Alkki, Markku & Aura, Pekka, 2018. "Experimental and numerical analysis of vaned wind turbine performance and flow phenomena," Energy, Elsevier, vol. 159(C), pages 827-841.
    15. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    16. Alexander, Aaron S. & Santhanakrishnan, Arvind, 2020. "Mechanisms of power augmentation in two side-by-side vertical axis wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 600-610.
    17. Yoshifumi Jodai & Yutaka Hara, 2023. "Wind-Tunnel Experiments on the Interactions among a Pair/Trio of Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-27, January.
    18. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    2. Wenlong Tian & Baowei Song & James H. VanZwieten & Parakram Pyakurel, 2015. "Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes," Energies, MDPI, vol. 8(8), pages 1-15, July.
    3. Krzysztof Doerffer & Janusz Telega & Piotr Doerffer & Paulina Hercel & Andrzej Tomporowski, 2021. "Dependence of Power Characteristics on Savonius Rotor Segmentation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    4. Baoshou Zhang & Baowei Song & Zhaoyong Mao & Wenlong Tian & Boyang Li & Bo Li, 2017. "A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines," Energies, MDPI, vol. 10(3), pages 1-20, March.
    5. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    6. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    7. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    8. Zhaoyong Mao & Guangyong Yang & Tianqi Zhang & Wenlong Tian, 2020. "Aerodynamic Performance Analysis of a Building-Integrated Savonius Turbine," Energies, MDPI, vol. 13(10), pages 1-21, May.
    9. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    10. Tartuferi, Mariano & D'Alessandro, Valerio & Montelpare, Sergio & Ricci, Renato, 2015. "Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems," Energy, Elsevier, vol. 79(C), pages 371-384.
    11. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    12. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    13. Piotr Doerffer & Krzysztof Doerffer & Tomasz Ochrymiuk & Janusz Telega, 2019. "Variable Size Twin-Rotor Wind Turbine," Energies, MDPI, vol. 12(13), pages 1-17, July.
    14. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Krzysztof Sobczak & Damian Obidowski & Piotr Reorowicz & Emil Marchewka, 2020. "Numerical Investigations of the Savonius Turbine with Deformable Blades," Energies, MDPI, vol. 13(14), pages 1-20, July.
    16. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    17. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    18. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    19. Tai-Lin Chang & Shun-Feng Tsai & Chun-Lung Chen, 2021. "Optimal Design of Novel Blade Profile for Savonius Wind Turbines," Energies, MDPI, vol. 14(12), pages 1-14, June.
    20. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:341-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.