IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1598-d153204.html
   My bibliography  Save this article

Analysis and Optimization of the Electromagnetic Performance of a Novel Stator Modular Ring Drive Thruster Motor

Author

Listed:
  • Yukai Li

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an 710072, China)

  • Baowei Song

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an 710072, China)

  • Zhaoyong Mao

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

  • Wenlong Tian

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

A rim driven thruster (RDT) is an integrated deep-sea motor thruster that has been widely studied. In order to improve the performance of RDT, a novel RDT motor with a modular stator is proposed in this paper. The electromagnetic performance of the new RDT motor is analyzed by the finite element method (FEM). The influence of structure parameters on the electromagnetic performance of the new RDT motor are analyzed in detail. It is shown that the effect of additional tooth width and pole arc coefficient on the electromagnetic performance of the stator modular RDT motor is significant. To obtain the optimal design with a maximum average electromagnetic torque and minimum torque fluctuation ratio, a multi-objective optimization design method combining the non-dominated sorting genetic algorithm II (NSGA-II), Kriging method and FEM is presented in this paper. A set of Pareto optimal solutions is obtained, and the optimal design point is selected from the Pareto fronts. Compared with the initial design, the average electromagnetic torque of the optimized model is improved by 16.591% and the fluctuation ratio is reduced to 3.18%.

Suggested Citation

  • Yukai Li & Baowei Song & Zhaoyong Mao & Wenlong Tian, 2018. "Analysis and Optimization of the Electromagnetic Performance of a Novel Stator Modular Ring Drive Thruster Motor," Energies, MDPI, vol. 11(6), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1598-:d:153204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2017. "A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines," Energy, Elsevier, vol. 121(C), pages 341-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong-Min You, 2019. "Optimal Design of PMSM Based on Automated Finite Element Analysis and Metamodeling," Energies, MDPI, vol. 12(24), pages 1-18, December.
    2. Lahcen Amri & Smail Zouggar & Jean-Frédéric Charpentier & Mohamed Kebdani & Abdelhamid Senhaji & Abdelilah Attar & Farid Bakir, 2023. "Design and Optimization of Synchronous Motor Using PM Halbach Arrays for Rim-Driven Counter-Rotating Pump," Energies, MDPI, vol. 16(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
    2. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    3. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    4. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    5. Yoshifumi Jodai & Yutaka Hara, 2023. "Wind-Tunnel Experiments on the Interactions among a Pair/Trio of Closely Spaced Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-27, January.
    6. Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
    7. Heejeon Im & Bumsuk Kim, 2022. "Power Performance Analysis Based on Savonius Wind Turbine Blade Design and Layout Optimization through Rotor Wake Flow Analysis," Energies, MDPI, vol. 15(24), pages 1-17, December.
    8. Alexander, Aaron S. & Santhanakrishnan, Arvind, 2020. "Mechanisms of power augmentation in two side-by-side vertical axis wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 600-610.
    9. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    10. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    11. Grönman, Aki & Backman, Jari & Hansen-Haug, Markus & Laaksonen, Mikko & Alkki, Markku & Aura, Pekka, 2018. "Experimental and numerical analysis of vaned wind turbine performance and flow phenomena," Energy, Elsevier, vol. 159(C), pages 827-841.
    12. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    13. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    14. Yixiao Zhang & Eddie Yin Kwee Ng & Shivansh Mittal, 2023. "The Biffis Canal Hydrodynamic System Performance Study of Drag-Dominant Tidal Turbine Using Moment Balancing Method," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    15. Kumail Abdulkareem Hadi Al-Gburi & Balasem Abdulameer Jabbar Al-quraishi & Firas Basim Ismail Alnaimi & Ee Sann Tan & Ali Hussein Shamman Al-Safi, 2022. "Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-23, November.
    16. Davide Cazzaro & Gabriele Bedon & David Pisinger, 2023. "Vertical Axis Wind Turbine Layout Optimization," Energies, MDPI, vol. 16(6), pages 1-16, March.
    17. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1598-:d:153204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.