IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp839-853.html
   My bibliography  Save this article

Shape optimization and experimental validation of a drag vertical axis wind turbine

Author

Listed:
  • Ramadan, A.
  • Yousef, K.
  • Said, M.
  • Mohamed, M.H.

Abstract

In recent years, the energy crisis severally appears due to the enormous human development. The renewable energy is a new source for world energy demand nowadays, especially the wind energy. Generally, wind energy is the most promising source for electric power demand in world because of the availability of the high wind speed around the year in several locations. This work investigates the drag type wind turbines, which have strong potential in small electric power generation demands. The scenario of this work is divided into two sections; the first one is the numerical analysis for the conventional Savonius with fully optimizing for the shape of the blade using a genetic algorithm. This optimization is performed to maximize the power coefficient with the same dimension of the conventional Savonius turbine. The second part is conducted experimentally to measure the performance of the conventional Savonius with the two and three blades; in addition, the optimal blade design (S shape) is tested to compare the performance of this new design with the conventional one or standard semi-circular blade. The results indicated that the captured efficiency of the optimal shape blade has the optimum value with 28% in contrasts to 14 and 10% for the two and three blades respectively.

Suggested Citation

  • Ramadan, A. & Yousef, K. & Said, M. & Mohamed, M.H., 2018. "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, Elsevier, vol. 151(C), pages 839-853.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:839-853
    DOI: 10.1016/j.energy.2018.03.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    2. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    3. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2010. "Optimization of Savonius turbines using an obstacle shielding the returning blade," Renewable Energy, Elsevier, vol. 35(11), pages 2618-2626.
    4. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    5. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)," Energy, Elsevier, vol. 104(C), pages 295-307.
    6. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    7. Shigetomi, Akinari & Murai, Yuichi & Tasaka, Yuji & Takeda, Yasushi, 2011. "Interactive flow field around two Savonius turbines," Renewable Energy, Elsevier, vol. 36(2), pages 536-545.
    8. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    9. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    10. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    11. Franković, Bernard & Vrsalović, Ivan, 2001. "New high profitable wind turbines," Renewable Energy, Elsevier, vol. 24(3), pages 491-499.
    12. Altan, Burçin Deda & Atılgan, Mehmet, 2010. "The use of a curtain design to increase the performance level of a Savonius wind rotors," Renewable Energy, Elsevier, vol. 35(4), pages 821-829.
    13. Driss, Zied & Mlayeh, Olfa & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2014. "Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor," Energy, Elsevier, vol. 74(C), pages 506-517.
    14. Tartuferi, Mariano & D'Alessandro, Valerio & Montelpare, Sergio & Ricci, Renato, 2015. "Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems," Energy, Elsevier, vol. 79(C), pages 371-384.
    15. Menet, J.-L., 2004. "A double-step Savonius rotor for local production of electricity: a design study," Renewable Energy, Elsevier, vol. 29(11), pages 1843-1862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    2. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    3. Rengma, Thochi Seb & Gupta, Mahendra Kumar & Subbarao, P.M.V., 2023. "A novel method of optimizing the Savonius hydrokinetic turbine blades using Bezier curve," Renewable Energy, Elsevier, vol. 216(C).
    4. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    5. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    6. Kumail Abdulkareem Hadi Al-Gburi & Balasem Abdulameer Jabbar Al-quraishi & Firas Basim Ismail Alnaimi & Ee Sann Tan & Ali Hussein Shamman Al-Safi, 2022. "Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-23, November.
    7. Abdelaziz, Khaled R. & Nawar, Mohamed A.A. & Ramadan, Ahmed & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Performance improvement of a Savonius turbine by using auxiliary blades," Energy, Elsevier, vol. 244(PA).
    8. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    9. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    10. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    11. Haddad, Hassan Z. & Mohamed, Mohamed H. & Shabana, Yasser M. & Elsayed, Khairy, 2023. "Optimization of Savonius wind turbine with additional blades by surrogate model using artificial neural networks," Energy, Elsevier, vol. 270(C).
    12. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    13. Baghdadi, M. & Elkoush, S. & Akle, B. & Elkhoury, M., 2020. "Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique," Renewable Energy, Elsevier, vol. 154(C), pages 239-251.
    14. Krzysztof Kołodziejczyk & Radosław Ptak, 2022. "Numerical Investigations of the Vertical Axis Wind Turbine with Guide Vane," Energies, MDPI, vol. 15(22), pages 1-14, November.
    15. Nematollahi, Omid & Alamdari, Pouria & Jahangiri, Mehdi & Sedaghat, Ahmad & Alemrajabi, Ali Akbar, 2019. "A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps," Energy, Elsevier, vol. 175(C), pages 914-930.
    16. Mohamed, M.H. & Dessoky, A. & Alqurashi, Faris, 2019. "Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis," Energy, Elsevier, vol. 179(C), pages 1217-1234.
    17. Nawar, Mohamed A.A. & Hameed, H.S. Abdel & Ramadan, A. & Attai, Youssef A. & Mohamed, M.H., 2021. "Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance," Energy, Elsevier, vol. 223(C).
    18. Abdelaziz, Khaled R. & Nawar, Mohamed A.A. & Ramadan, Ahmed & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance assessment of a modified of Savonius rotor: Impact of sine and conical blade profiles," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    2. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    3. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    4. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    5. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Maaloul, Makram & Abid, Mohamed Salah, 2016. "Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel," Energy, Elsevier, vol. 113(C), pages 894-908.
    7. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    8. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    9. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    10. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    11. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    12. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    13. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    14. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    15. El-Baz, A.R. & Youssef, K. & Mohamed, M.H., 2016. "Innovative improvement of a drag wind turbine performance," Renewable Energy, Elsevier, vol. 86(C), pages 89-98.
    16. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
    17. Tartuferi, Mariano & D'Alessandro, Valerio & Montelpare, Sergio & Ricci, Renato, 2015. "Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems," Energy, Elsevier, vol. 79(C), pages 371-384.
    18. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    19. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    20. Hashem, Islam & Zhu, Baoshan, 2021. "Metamodeling-based parametric optimization of a bio-inspired Savonius-type hydrokinetic turbine," Renewable Energy, Elsevier, vol. 180(C), pages 560-576.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:839-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.